Home
Class 12
MATHS
sin^(-1){sqrt((1-cosx)/(2))}...

`sin^(-1){sqrt((1-cosx)/(2))}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \sin^{-1}\left(\sqrt{\frac{1 - \cos x}{2}}\right) \), we will differentiate \( y \) with respect to \( x \). Let's go through the steps systematically. ### Step 1: Rewrite the expression inside the inverse sine function We know from trigonometric identities that: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the expression as: \[ \sqrt{\frac{1 - \cos x}{2}} = \sqrt{\frac{2 \sin^2\left(\frac{x}{2}\right)}{2}} = \sqrt{\sin^2\left(\frac{x}{2}\right)} = \sin\left(\frac{x}{2}\right) \] So, we can rewrite \( y \): \[ y = \sin^{-1}\left(\sin\left(\frac{x}{2}\right)\right) \] ### Step 2: Simplify the expression for \( y \) Since \( \sin^{-1}(\sin(\theta)) = \theta \) for \( \theta \) in the range of \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \), we have: \[ y = \frac{x}{2} \] ### Step 3: Differentiate \( y \) with respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \] ### Final Result Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

intcot^(-1)sqrt((1+cosx)/(1-cosx))dx=

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

Find the principal value of each of the following :(i)(sin^(-1)1)/(2)-2(sin^(-1)1)/(sqrt(2))( ii) sin^(-1){cos(sin^(-1)(sqrt((3)/(2)))}^(sqrt(2))

Find the differentiation of y=tan^(-1)sqrt((1+cosx/2)/(1-cosx/2))

Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .

If int(cosx-sinx)/(sqrt(8-sin2x))dx=sin^(-1)((sinx+cosx)/(a))+C then a =

The sum of the infinte series sin^(-1)((1)/(sqrt(2)))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+...sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

Differentiate sin^(-1){(sinx+cosx)/(sqrt(2))}, -(3pi)/4

y=sin^(-1)((sinx+cosx)/sqrt2)=?

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :