Home
Class 12
MATHS
cot^(-1)((sqrt(1-x^(2)))/(x))...

`cot^(-1)((sqrt(1-x^(2)))/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cot^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right) \), we can follow these steps: ### Step 1: Rewrite the function Let: \[ y = \cot^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right) \] ### Step 2: Use the substitution We can use the trigonometric identity by letting \( x = \sin \theta \). Then, we have: \[ \sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta \] Thus, we can rewrite \( y \) as: \[ y = \cot^{-1}\left(\frac{\cos \theta}{\sin \theta}\right) = \cot^{-1}(\cot \theta) \] ### Step 3: Simplify the expression Since \( \cot^{-1}(\cot \theta) = \theta \) (for \( \theta \) in the appropriate range), we can express \( y \) as: \[ y = \theta \] ### Step 4: Relate \( \theta \) back to \( x \) Since \( x = \sin \theta \), we can express \( \theta \) as: \[ \theta = \sin^{-1}(x) \] ### Step 5: Differentiate \( y \) with respect to \( x \) Now we can differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx}(\sin^{-1}(x)) \] Using the derivative of the inverse sine function: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \] ### Final Answer Thus, the derivative of the given function is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of y=cot^(-1)((sqrt(1+x^(2))+1)/(x))

(d)/(dx)[cot^-1((1+sqrt(1-x^(2)))/(x))]=

Prove that cot^(-1)((1+sqrt(1-x^(2)))/x)=(1)/(2)sin^(-1)x

Differentiate the following w.r.t. x : cot^(-1)((sqrt(1+x^(2))-1)/(x)),xne0

cot^(-1)sqrt(x)

Diferentiate the following functions w.r.t.xy=cot^(-1)[(sqrt((1+x^(2)))+1)/(x)]]]

Differentiate sin^(-1)sqrt(1-x^(2)) with respect to cot^(-1)((x)/(sqrt(1-x^(2)))), if ^(@)0

If -1

cot^(-1)((1)/(sqrt(x)))