Home
Class 12
MATHS
Find (dy)/(dx), when: y=x^(1//x)...

Find `(dy)/(dx)`, when:
`y=x^(1//x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(y = x^{\frac{1}{x}}\), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides to simplify the expression: \[ \ln y = \ln\left(x^{\frac{1}{x}}\right) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \(\ln(a^b) = b \ln a\), we can rewrite the right-hand side: \[ \ln y = \frac{1}{x} \ln x \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \(x\). Remember to use implicit differentiation on the left side: \[ \frac{d}{dx}(\ln y) = \frac{d}{dx}\left(\frac{1}{x} \ln x\right) \] Using the chain rule on the left side, we have: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}\left(\frac{1}{x} \ln x\right) \] ### Step 4: Differentiate the right-hand side To differentiate the right-hand side, we will use the product rule: \[ \frac{d}{dx}\left(\frac{1}{x} \ln x\right) = \frac{d}{dx}(\frac{1}{x}) \cdot \ln x + \frac{1}{x} \cdot \frac{d}{dx}(\ln x) \] Calculating each derivative: \[ \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}, \quad \frac{d}{dx}(\ln x) = \frac{1}{x} \] Thus, we have: \[ \frac{d}{dx}\left(\frac{1}{x} \ln x\right) = -\frac{1}{x^2} \ln x + \frac{1}{x^2} \] Combining these: \[ \frac{d}{dx}\left(\frac{1}{x} \ln x\right) = \frac{1 - \ln x}{x^2} \] ### Step 5: Substitute back into the equation Now substituting back into our differentiated equation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1 - \ln x}{x^2} \] ### Step 6: Solve for \(\frac{dy}{dx}\) Multiplying both sides by \(y\): \[ \frac{dy}{dx} = y \cdot \frac{1 - \ln x}{x^2} \] Since \(y = x^{\frac{1}{x}}\), we substitute \(y\) back: \[ \frac{dy}{dx} = x^{\frac{1}{x}} \cdot \frac{1 - \ln x}{x^2} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{x^{\frac{1}{x}}(1 - \ln x)}{x^2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(tanx)^(1//x)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=(xcos^(-1)x)/(sqrt(1-x^(2)))

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=sin(x^(x))

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx), when: y=(1+x)(1+x^(2))(1+x^(4))(1+x^(6))

Find (dy)/(dx) , when: y=x^((cos^(-1)x))

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)