Home
Class 12
MATHS
Find (dy)/(dx), when: y=(logx)^(x)...

Find `(dy)/(dx)`, when:
`y=(logx)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(y = (\log x)^x\), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides to simplify the differentiation process: \[ \log y = \log((\log x)^x) \] ### Step 2: Apply the logarithmic property Using the property of logarithms, we can simplify the right-hand side: \[ \log y = x \cdot \log(\log x) \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \(x\). We will use implicit differentiation on the left side and the product rule on the right side: \[ \frac{d}{dx}(\log y) = \frac{d}{dx}(x \cdot \log(\log x)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(x) \cdot \log(\log x) + x \cdot \frac{d}{dx}(\log(\log x)) \] ### Step 4: Differentiate the right-hand side Now we differentiate the right-hand side: 1. The derivative of \(x\) is \(1\). 2. The derivative of \(\log(\log x)\) using the chain rule is: \[ \frac{1}{\log x} \cdot \frac{1}{x} = \frac{1}{x \log x} \] Putting it all together: \[ \frac{1}{y} \frac{dy}{dx} = \log(\log x) + x \cdot \frac{1}{x \log x} \] This simplifies to: \[ \frac{1}{y} \frac{dy}{dx} = \log(\log x) + \frac{1}{\log x} \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now we multiply both sides by \(y\) to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = y \left(\log(\log x) + \frac{1}{\log x}\right) \] ### Step 6: Substitute back for \(y\) Recall that \(y = (\log x)^x\): \[ \frac{dy}{dx} = (\log x)^x \left(\log(\log x) + \frac{1}{\log x}\right) \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = (\log x)^x \left(\log(\log x) + \frac{1}{\log x}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) , when: y=(cosx)^(logx)

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=x^(1//x)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) , when y=sqrt(x)

Find (dy)/(dx) , when: y=sin(x^(x))