Home
Class 12
MATHS
Find (dy)/(dx), when: y=x^((cos^(-1)x)...

Find `(dy)/(dx)`, when:
`y=x^((cos^(-1)x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = x^{\cos^{-1}(x)}\), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln(y) = \ln\left(x^{\cos^{-1}(x)}\right) \] ### Step 2: Simplify using logarithmic properties Using the property of logarithms that states \(\ln(a^b) = b \ln(a)\), we can simplify the right-hand side: \[ \ln(y) = \cos^{-1}(x) \cdot \ln(x) \] ### Step 3: Differentiate both sides with respect to \(x\) Now, we differentiate both sides with respect to \(x\). We will use the product rule on the right side: \[ \frac{d}{dx}(\ln(y)) = \frac{d}{dx}(\cos^{-1}(x) \cdot \ln(x)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\cos^{-1}(x)) \cdot \ln(x) + \cos^{-1}(x) \cdot \frac{d}{dx}(\ln(x)) \] ### Step 4: Differentiate \(\cos^{-1}(x)\) and \(\ln(x)\) We know: \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1-x^2}} \] and \[ \frac{d}{dx}(\ln(x)) = \frac{1}{x} \] Substituting these derivatives into our equation gives: \[ \frac{1}{y} \frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}} \ln(x) + \cos^{-1}(x) \cdot \frac{1}{x} \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = y \left(-\frac{1}{\sqrt{1-x^2}} \ln(x) + \frac{\cos^{-1}(x)}{x}\right) \] Substituting back the value of \(y\): \[ \frac{dy}{dx} = x^{\cos^{-1}(x)} \left(-\frac{1}{\sqrt{1-x^2}} \ln(x) + \frac{\cos^{-1}(x)}{x}\right) \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = x^{\cos^{-1}(x)} \left(-\frac{\ln(x)}{\sqrt{1-x^2}} + \frac{\cos^{-1}(x)}{x}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(1//x)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)

Find (dy)/(dx) , when y=sqrt(x)

Find (dy)/(dx) , when: y=(logx)^(x)

find (dy)/(dx) when y=cos^(-1)(2x^(2)-1)

Find (dy)/(dx) , when: y=(sinx)^(x)+sin^(-1)sqrtx

Find (dy)/(dx) , when : If y=((cos x - sin x))/((cos x + sin x)) , prove that (dy)/(dx)+y^(2)+1=0 .

Find (dy)/(dx) when x^(y)=e^(x+y)