Home
Class 12
MATHS
Find (dy)/(dx), when: y=(logx)^(sinx)...

Find `(dy)/(dx), when:
`y=(logx)^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = (\log x)^{\sin x}\), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides to simplify the differentiation process. \[ \log y = \sin x \cdot \log(\log x) \] ### Step 2: Differentiate both sides with respect to \(x\) Now we differentiate both sides with respect to \(x\). We will use implicit differentiation on the left side and the product rule on the right side. \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\sin x \cdot \log(\log x)) \] Using the product rule on the right side: \[ \frac{d}{dx}(\sin x \cdot \log(\log x)) = \cos x \cdot \log(\log x) + \sin x \cdot \frac{1}{\log x} \cdot \frac{1}{x} \] This simplifies to: \[ \frac{d}{dx}(\sin x \cdot \log(\log x)) = \cos x \cdot \log(\log x) + \frac{\sin x}{x \log x} \] ### Step 3: Substitute back into the equation Now we substitute this back into our differentiated equation: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \log(\log x) + \frac{\sin x}{x \log x} \] ### Step 4: Solve for \(\frac{dy}{dx}\) To isolate \(\frac{dy}{dx}\), we multiply both sides by \(y\): \[ \frac{dy}{dx} = y \left( \cos x \cdot \log(\log x) + \frac{\sin x}{x \log x} \right) \] ### Step 5: Substitute \(y\) back in Since \(y = (\log x)^{\sin x}\), we substitute back: \[ \frac{dy}{dx} = (\log x)^{\sin x} \left( \cos x \cdot \log(\log x) + \frac{\sin x}{x \log x} \right) \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = (\log x)^{\sin x} \left( \cos x \cdot \log(\log x) + \frac{\sin x}{x \log x} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) when : y=(cosx)/(1+sinx)

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=(cosx)^(logx)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))