Home
Class 12
MATHS
Find (dy)/(dx), when: y=(cosx)^(logx)...

Find `(dy)/(dx)`, when:
`y=(cosx)^(logx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(y = (\cos x)^{\log x}\), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the differentiation process. \[ \log y = \log((\cos x)^{\log x}) \] ### Step 2: Use the power rule of logarithms Using the power rule of logarithms, we can rewrite the right side: \[ \log y = \log x \cdot \log(\cos x) \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \(x\). We will use implicit differentiation on the left side and the product rule on the right side. \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\log x \cdot \log(\cos x)) \] Using the product rule on the right side: \[ \frac{d}{dx}(\log x \cdot \log(\cos x)) = \log(\cos x) \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}(\log(\cos x)) \] ### Step 4: Compute the derivatives Now, we compute the derivatives: 1. \(\frac{d}{dx}(\log x) = \frac{1}{x}\) 2. For \(\frac{d}{dx}(\log(\cos x))\), we use the chain rule: \[ \frac{d}{dx}(\log(\cos x)) = \frac{-\sin x}{\cos x} = -\tan x \] Substituting these derivatives back into our equation gives: \[ \frac{1}{y} \frac{dy}{dx} = \log(\cos x) \cdot \frac{1}{x} + \log x \cdot (-\tan x) \] ### Step 5: Multiply both sides by \(y\) Now, we multiply both sides by \(y\) to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = y \left( \frac{\log(\cos x)}{x} - \log x \cdot \tan x \right) \] ### Step 6: Substitute back for \(y\) Recall that \(y = (\cos x)^{\log x}\), so we substitute back: \[ \frac{dy}{dx} = (\cos x)^{\log x} \left( \frac{\log(\cos x)}{x} - \log x \cdot \tan x \right) \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = (\cos x)^{\log x} \left( \frac{\log(\cos x)}{x} - \log x \cdot \tan x \right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(cosx)^(cosx)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) when : y=(cosx)/(1+sinx)

Find (dy)/(dx) where (i) y=(cosx log x)

Find (dy)/(dx) , when y=sqrt(x)

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))

Find (dy)/(dx)" when "y=(x+cosx)/(tanx) .