Home
Class 12
MATHS
Find (dy)/(dx), when: y=(tanx)^(sinx)...

Find `(dy)/(dx)`, when:
`y=(tanx)^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) where \(y = (\tan x)^{\sin x}\), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides to simplify the differentiation: \[ \ln y = \ln((\tan x)^{\sin x}) \] ### Step 2: Apply the logarithmic property Using the property of logarithms that states \(\ln(a^b) = b \ln a\), we can rewrite the equation: \[ \ln y = \sin x \cdot \ln(\tan x) \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(\ln y) = \frac{d}{dx}(\sin x \cdot \ln(\tan x)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\sin x) \cdot \ln(\tan x) + \sin x \cdot \frac{d}{dx}(\ln(\tan x)) \] ### Step 4: Differentiate the right side using the product rule Now we apply the product rule on the right side: \[ \frac{d}{dx}(\sin x) = \cos x \] For \(\frac{d}{dx}(\ln(\tan x))\), we use the chain rule: \[ \frac{d}{dx}(\ln(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] ### Step 5: Substitute back into the equation Now substituting these derivatives back into our equation: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln(\tan x) + \sin x \cdot \frac{\sec^2 x}{\tan x} \] ### Step 6: Multiply both sides by \(y\) To isolate \(\frac{dy}{dx}\), we multiply both sides by \(y\): \[ \frac{dy}{dx} = y \left( \cos x \cdot \ln(\tan x) + \sin x \cdot \frac{\sec^2 x}{\tan x} \right) \] ### Step 7: Substitute \(y\) back in Recall that \(y = (\tan x)^{\sin x}\): \[ \frac{dy}{dx} = (\tan x)^{\sin x} \left( \cos x \cdot \ln(\tan x) + \sin x \cdot \frac{\sec^2 x}{\tan x} \right) \] ### Final Answer Thus, the final answer is: \[ \frac{dy}{dx} = (\tan x)^{\sin x} \left( \cos x \cdot \ln(\tan x) + \sin x \cdot \frac{\sec^2 x}{\tan x} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(tanx)^(cotx)

Find (dy)/(dx) , when: y=(tanx)^(1//x)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) when : y=(x+tanx)/(tanx)