Home
Class 12
MATHS
Find (dy)/(dx), when: y=(cosx)^(cosx)...

Find `(dy)/(dx)`, when:
`y=(cosx)^(cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(y = (\cos x)^{\cos x}\), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides to simplify the differentiation process. \[ \ln y = \ln((\cos x)^{\cos x}) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \(\ln(a^b) = b \cdot \ln a\), we can rewrite the equation: \[ \ln y = \cos x \cdot \ln(\cos x) \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \(x\). We will use implicit differentiation on the left side and the product rule on the right side. \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\cos x \cdot \ln(\cos x)) \] Using the product rule, we have: \[ \frac{d}{dx}(\cos x \cdot \ln(\cos x)) = \frac{d}{dx}(\cos x) \cdot \ln(\cos x) + \cos x \cdot \frac{d}{dx}(\ln(\cos x)) \] ### Step 4: Differentiate \(\cos x\) and \(\ln(\cos x)\) Now we differentiate each part: 1. The derivative of \(\cos x\) is \(-\sin x\). 2. The derivative of \(\ln(\cos x)\) using the chain rule is \(\frac{-\sin x}{\cos x} = -\tan x\). Putting these together, we have: \[ \frac{1}{y} \frac{dy}{dx} = (-\sin x) \cdot \ln(\cos x) + \cos x \cdot (-\tan x) \] ### Step 5: Simplify the right-hand side The term \(\cos x \cdot (-\tan x)\) can be rewritten as \(-\sin x\): \[ \frac{1}{y} \frac{dy}{dx} = -\sin x \ln(\cos x) - \sin x \] ### Step 6: Multiply both sides by \(y\) Now, we multiply both sides by \(y\) to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = y \left(-\sin x \ln(\cos x) - \sin x\right) \] ### Step 7: Substitute back for \(y\) Recall that \(y = (\cos x)^{\cos x}\): \[ \frac{dy}{dx} = (\cos x)^{\cos x} \left(-\sin x \ln(\cos x) - \sin x\right) \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\sin x (\cos x)^{\cos x} \left(\ln(\cos x) + 1\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(cosx)^(logx)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: (cosx)^(y)=(cosy)^(x)

Find (dy)/(dx) when : y=(cosx)/(1+sinx)

Find (dy)/(dx)" when "y=(x+cosx)/(tanx) .

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find (dy)/(dx)" when "y=(x^(5)-cosx)/(sinx) .

Find (dy)/(dx) where (i) y=(cosx log x)

Find (dy)/(dx) , if y=(sinx)^(cosx)

Find (dy)/(dx) , when: ytanx-y^(2)cosx+2x=0