Home
Class 12
MATHS
Find (dy)/(dx), when: y=(3x+5)^((2x-3))...

Find `(dy)/(dx)`, when: `y=(3x+5)^((2x-3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = (3x + 5)^{(2x - 3)}\), we will use logarithmic differentiation. Here are the steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides: \[ \ln y = \ln((3x + 5)^{(2x - 3)}) \] ### Step 2: Apply the logarithmic power rule Using the property of logarithms that states \(\ln(a^b) = b \ln a\), we can simplify the equation: \[ \ln y = (2x - 3) \ln(3x + 5) \] ### Step 3: Differentiate both sides with respect to \(x\) Now we differentiate both sides. Remember to use the product rule on the right side: \[ \frac{d}{dx}(\ln y) = \frac{d}{dx}((2x - 3) \ln(3x + 5)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}((2x - 3) \ln(3x + 5)) \] ### Step 4: Apply the product rule on the right side Using the product rule: \[ \frac{d}{dx}((2x - 3) \ln(3x + 5)) = (2x - 3) \frac{d}{dx}(\ln(3x + 5)) + \ln(3x + 5) \frac{d}{dx}(2x - 3) \] Calculating the derivatives: \[ \frac{d}{dx}(\ln(3x + 5)) = \frac{3}{3x + 5} \quad \text{and} \quad \frac{d}{dx}(2x - 3) = 2 \] Substituting these into our equation: \[ \frac{1}{y} \frac{dy}{dx} = (2x - 3) \left(\frac{3}{3x + 5}\right) + \ln(3x + 5)(2) \] ### Step 5: Multiply through by \(y\) Now, we multiply both sides by \(y\) to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = y \left((2x - 3) \frac{3}{3x + 5} + 2 \ln(3x + 5)\right) \] ### Step 6: Substitute back for \(y\) Since \(y = (3x + 5)^{(2x - 3)}\), we substitute back: \[ \frac{dy}{dx} = (3x + 5)^{(2x - 3)} \left((2x - 3) \frac{3}{3x + 5} + 2 \ln(3x + 5)\right) \] ### Final Answer Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = (3x + 5)^{(2x - 3)} \left((2x - 3) \frac{3}{3x + 5} + 2 \ln(3x + 5)\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(x).e^((2x+5))

Find (dy)/(dx) , when: y=(2-x)^(3)(3+2x)^(5)

Find (dy)/(dx) , when: y=(x+1)^(3)(3+2x)^(5)

Find (dy)/(dx) , when: y=(sqrtx(3x+5)^(2))/(sqrt(x+1))

Find (dy)/(dx) , when y=x^(5)+x^(4)+7

Find (dy)/(dx) , when: y=(2x+3)^(5)(3x-5)^(7)(5x-1)^(3)

Find (dy)/(dx) when y=(x^(2)+3x-5)^((3)/(2))

Find (dy)/(dx) , when: y=sqrt((x-2)(2x-3)(3x-4))

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=((x+1)^(2)sqrt(x-1))/((x+4)^(3).e^(x))