Home
Class 12
MATHS
Find (dy)/(dx), when: y=((x+1)^(2)sqrt...

Find `(dy)/(dx)`, when:
`y=((x+1)^(2)sqrt(x-1))/((x+4)^(3).e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \frac{(x+1)^2 \sqrt{x-1}}{(x+4)^3 e^x}, \] we will use logarithmic differentiation to simplify the process. ### Step 1: Take the natural logarithm of both sides Start by taking the natural logarithm of \(y\): \[ \ln y = \ln \left( \frac{(x+1)^2 \sqrt{x-1}}{(x+4)^3 e^x} \right). \] ### Step 2: Apply logarithmic properties Using the properties of logarithms, we can separate the terms: \[ \ln y = \ln((x+1)^2) + \ln(\sqrt{x-1}) - \ln((x+4)^3) - \ln(e^x). \] This simplifies to: \[ \ln y = 2 \ln(x+1) + \frac{1}{2} \ln(x-1) - 3 \ln(x+4) - x. \] ### Step 3: Differentiate both sides with respect to \(x\) Now, we differentiate both sides with respect to \(x\): Using implicit differentiation on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+4} - 1. \] ### Step 4: Solve for \(\frac{dy}{dx}\) Now, multiply both sides by \(y\) to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = y \left( \frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+4} - 1 \right). \] ### Step 5: Substitute back for \(y\) Substituting back the expression for \(y\): \[ \frac{dy}{dx} = \frac{(x+1)^2 \sqrt{x-1}}{(x+4)^3 e^x} \left( \frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+4} - 1 \right). \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{(x+1)^2 \sqrt{x-1}}{(x+4)^3 e^x} \left( \frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+4} - 1 \right). \] ---

To find \(\frac{dy}{dx}\) for the function \[ y = \frac{(x+1)^2 \sqrt{x-1}}{(x+4)^3 e^x}, \] we will use logarithmic differentiation to simplify the process. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(x^(2)sqrt(1+x))/((1+x^(2))^(3//2))

Find (dy)/(dx) , when: y=(x^(5)sqrt(x+4))/((2x+3)^(2))

Find (dy)/(dx) , when: y=(sqrtx(3x+5)^(2))/(sqrt(x+1))

Find (dy)/(dx) , when: y=sqrt((x-2)(2x-3)(3x-4))

Find (dy)/(dx) , when: y=2^(x).e^(3x)sin4x

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))

Find (dy)/(dx) when x^(y)=e^(x+y)

Find (dx)/(dy), when y=((x+1)(2x^(2)-1))/(x^(2)+1)

Find (dy)/(dx) , when: y=(xcos^(-1)x)/(sqrt(1-x^(2)))