Home
Class 12
MATHS
Find (dy)/(dx), when: y=(x^(2)sqrt(1+x...

Find `(dy)/(dx)`, when:
`y=(x^(2)sqrt(1+x))/((1+x^(2))^(3//2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \frac{x^2 \sqrt{1+x}}{(1+x^2)^{3/2}}, \] we will use logarithmic differentiation to simplify the process. Here are the steps: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides: \[ \ln y = \ln \left( \frac{x^2 \sqrt{1+x}}{(1+x^2)^{3/2}} \right). \] ### Step 2: Apply logarithmic properties Using the properties of logarithms, we can separate the terms: \[ \ln y = \ln(x^2) + \ln(\sqrt{1+x}) - \ln((1+x^2)^{3/2}). \] This simplifies to: \[ \ln y = 2 \ln x + \frac{1}{2} \ln(1+x) - \frac{3}{2} \ln(1+x^2). \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \(x\): \[ \frac{1}{y} \frac{dy}{dx} = \frac{2}{x} + \frac{1}{2(1+x)} - \frac{3}{2(1+x^2)} \cdot 2x. \] ### Step 4: Simplify the right-hand side This gives us: \[ \frac{1}{y} \frac{dy}{dx} = \frac{2}{x} + \frac{1}{2(1+x)} - \frac{3x}{1+x^2}. \] ### Step 5: Multiply by \(y\) to isolate \(\frac{dy}{dx}\) Now, we multiply both sides by \(y\): \[ \frac{dy}{dx} = y \left( \frac{2}{x} + \frac{1}{2(1+x)} - \frac{3x}{1+x^2} \right). \] ### Step 6: Substitute back for \(y\) Substituting back the expression for \(y\): \[ \frac{dy}{dx} = \frac{x^2 \sqrt{1+x}}{(1+x^2)^{3/2}} \left( \frac{2}{x} + \frac{1}{2(1+x)} - \frac{3x}{1+x^2} \right). \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{x^2 \sqrt{1+x}}{(1+x^2)^{3/2}} \left( \frac{2}{x} + \frac{1}{2(1+x)} - \frac{3x}{1+x^2} \right). \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(x^(5)sqrt(x+4))/((2x+3)^(2))

Find (dy)/(dx) , when: y=((x+1)^(2)sqrt(x-1))/((x+4)^(3).e^(x))

Find (dy)/(dx), when: y=(1+x)(1+x^(2))(1+x^(4))(1+x^(6))

Find (dy)/(dx) , when: y=(xcos^(-1)x)/(sqrt(1-x^(2)))

Find (dy)/(dx) when y=(x^(3))/(x^(3)+2)

Find (dy)/(dx) , when: y=x^(xcosx)+((x^(2)+1)/(x^(2)-1))

Find (dy)/(dx) , when: y=(sqrtx(3x+5)^(2))/(sqrt(x+1))

Find (dy)/(dx) " when " y = sin^(-1) sqrt((1+x^(2))/2)

Find (dy)/(dx) , when: y=sqrt((x-2)(2x-3)(3x-4))

Find (dx)/(dy), when y=((x+1)(2x^(2)-1))/(x^(2)+1)