Home
Class 12
MATHS
Find (dy)/(dx), when: y=(x^(3)sinx)/(e...

Find `(dy)/(dx)`, when:
`y=(x^(3)sinx)/(e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \frac{x^3 \sin x}{e^x}\), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides: \[ \ln y = \ln\left(\frac{x^3 \sin x}{e^x}\right) \] ### Step 2: Apply logarithmic properties Using the properties of logarithms, we can simplify the right-hand side: \[ \ln y = \ln(x^3) + \ln(\sin x) - \ln(e^x) \] This simplifies to: \[ \ln y = 3 \ln x + \ln(\sin x) - x \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \(x\): \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(3 \ln x) + \frac{d}{dx}(\ln(\sin x)) - \frac{d}{dx}(x) \] ### Step 4: Differentiate each term Calculating the derivatives: 1. \(\frac{d}{dx}(3 \ln x) = \frac{3}{x}\) 2. \(\frac{d}{dx}(\ln(\sin x)) = \frac{\cos x}{\sin x} = \cot x\) 3. \(\frac{d}{dx}(x) = 1\) Putting it all together, we have: \[ \frac{1}{y} \frac{dy}{dx} = \frac{3}{x} + \cot x - 1 \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we multiply both sides by \(y\) to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = y \left(\frac{3}{x} + \cot x - 1\right) \] ### Step 6: Substitute back for \(y\) Recall that \(y = \frac{x^3 \sin x}{e^x}\). Substitute this back into the equation: \[ \frac{dy}{dx} = \frac{x^3 \sin x}{e^x} \left(\frac{3}{x} + \cot x - 1\right) \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{x^3 \sin x}{e^x} \left(\frac{3}{x} + \cot x - 1\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx) , when: y=2^(x).e^(3x)sin4x

Find (dy)/(dx) , when y=sqrt(x)

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find (dy)/(dx), when y=(e^(e))^(x)