Home
Class 12
MATHS
Find (dy)/(dx), when: y=(e^(x)logx)/(x...

Find `(dy)/(dx)`, when:
`y=(e^(x)logx)/(x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(e^(x)logx)/(x^(2)).{1+(1)/((xlogx))-(2)/(x)}`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when y=(e^(e))^(x)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=(cosx)^(logx)

Find (dy)/(dx), when y=e^(x)log(1+x^(2))

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) when x^(y)=e^(x+y)

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=x^(x).e^((2x+5))