Home
Class 12
MATHS
Find (dy)/(dx), when: y=x^(x)-2^(sinx)...

Find `(dy)/(dx)`, when:
`y=x^(x)-2^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = x^x - 2^{\sin x}\), we will differentiate each term separately. ### Step 1: Differentiate \(x^x\) To differentiate \(x^x\), we can use logarithmic differentiation. 1. Let \(t = x^x\). 2. Taking the natural logarithm of both sides: \[ \ln t = x \ln x \] 3. Now differentiate both sides with respect to \(x\): \[ \frac{1}{t} \frac{dt}{dx} = \ln x + 1 \] 4. Rearranging gives: \[ \frac{dt}{dx} = t(\ln x + 1) \] 5. Substituting back for \(t\): \[ \frac{dt}{dx} = x^x(\ln x + 1) \] ### Step 2: Differentiate \(2^{\sin x}\) To differentiate \(2^{\sin x}\), we can use the chain rule: 1. The derivative of \(a^{u}\) is given by \(a^u \ln a \cdot \frac{du}{dx}\). 2. Here, \(a = 2\) and \(u = \sin x\): \[ \frac{d}{dx}(2^{\sin x}) = 2^{\sin x} \ln 2 \cdot \cos x \] ### Step 3: Combine the results Now we can combine the derivatives of both terms to find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{d}{dx}(x^x) - \frac{d}{dx}(2^{\sin x}) \] Substituting the derivatives we found: \[ \frac{dy}{dx} = x^x(\ln x + 1) - 2^{\sin x} \ln 2 \cdot \cos x \] ### Final Answer Thus, the final result is: \[ \frac{dy}{dx} = x^x(\ln x + 1) - 2^{\sin x} \ln 2 \cdot \cos x \]

To find \(\frac{dy}{dx}\) for the function \(y = x^x - 2^{\sin x}\), we will differentiate each term separately. ### Step 1: Differentiate \(x^x\) To differentiate \(x^x\), we can use logarithmic differentiation. 1. Let \(t = x^x\). 2. Taking the natural logarithm of both sides: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(1//x)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=sin(x^(x))

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) when x^(y)=e^(x+y)