Home
Class 12
MATHS
Find (dy)/(dx), when: y=x^(sinx)+(sinx...

Find `(dy)/(dx)`, when:
`y=x^(sinx)+(sinx)^(cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = x^{\sin x} + (\sin x)^{\cos x}\), we will differentiate each part of the function separately and then combine the results. ### Step-by-Step Solution: 1. **Identify the two parts of the function:** \[ y = u + v \] where \(u = x^{\sin x}\) and \(v = (\sin x)^{\cos x}\). 2. **Differentiate \(u = x^{\sin x}\):** - Take the natural logarithm of both sides: \[ \ln u = \sin x \cdot \ln x \] - Differentiate both sides with respect to \(x\): \[ \frac{1}{u} \frac{du}{dx} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \] - Multiply through by \(u\): \[ \frac{du}{dx} = u \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] - Substitute back for \(u\): \[ \frac{du}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] 3. **Differentiate \(v = (\sin x)^{\cos x}\):** - Take the natural logarithm of both sides: \[ \ln v = \cos x \cdot \ln(\sin x) \] - Differentiate both sides with respect to \(x\): \[ \frac{1}{v} \frac{dv}{dx} = -\sin x \cdot \ln(\sin x) + \cos x \cdot \frac{1}{\sin x} \cdot \cos x \] - Simplifying gives: \[ \frac{dv}{dx} = v \left( -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right) \] - Substitute back for \(v\): \[ \frac{dv}{dx} = (\sin x)^{\cos x} \left( -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right) \] 4. **Combine the derivatives:** \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + (\sin x)^{\cos x} \left( -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right) \] ### Final Answer: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + (\sin x)^{\cos x} \left( -\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=(cosx)^(cosx)

Find (dy)/(dx) , when: y=(sinx)^(x)+sin^(-1)sqrtx

Find (dy)/(dx) when : y=(cosx)/(1+sinx)

Find (dy)/(dx)" when "y=(x^(5)-cosx)/(sinx) .

Find (dy)/(dx) , when If y = (cos x + sinx)/(cos x - sinx) , show that (dy)/(dx) = sec^(2) (x + (pi)/(4)) .