Home
Class 12
MATHS
Find (dy)/(dx), when: y=(xcosx)^(x)+(x...

Find `(dy)/(dx)`, when:
`y=(xcosx)^(x)+(x sin x)^(1//x)`

Text Solution

Verified by Experts

The correct Answer is:
`(x cos x)^(x){1-x tan x+log x+log cos x}+(x sin x)^(1//x).{(1)/(x^(2))+(cotx)/(x)-(logx)/(x^(2))-(logsinx)/(x^(2))}`

Let `y=u+v`, where `u=(xcosx)^(x) and v=(x sin x)^(1//x).`
Then, `(dy)/(dx)=(du)/(dx)+(dv)/(dx)`.
Now, `u=(x cos x)^(x) rArr log u=x log (x cos x)`
`rArr logu=x.{logx+log cos x}`
`rArr(1)/(u).(du)/(dx)=x.{(1)/(x)-(sinx)/(cosx)}+{logx+log cos x}.1`
`rArr (du)/(dx)=u{(1-x tanx)+(log x+log cosx)}`
`rArr (du)/(dx)=(x cos x)^(x){(1-x tan x+logx+log cos x)}.`
And, `v=(x sin x)^(1//x) rArr log v=(1)/(x)log(x sinx)`
`rArr logv=(1)/(x).{log x+log sin x}`
`rArr (1)/(v).(dv)/(dx)=(1)/(x).((1)/(x)+(cos x)/(sinx))+(logx+log sin x)((-1)/(x^(2)))`
`rArr(1)/(v).(dv)/(dx)={(1)/(x^(2))+(1)/()cotx-(logx)/(x^(2))-(logsinx)/(x^(2))}`
`rArr(dv)/(dx)=v.{(1)/(x^(2))+(cotx)/(x)-(logx)/(x^(2))-(log sin x)/(x^(2))}`
`rArr (dv)/(dx)=(x sin x)^(1//x).{(1)/(x^(2))+(cotx)/(x)-(logx)/(x^(2))-(log sin x)/(x^(2))}.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)

Find (dy)/(dx) , when: y=sin(x^(x))

Find (dy)/(dx) , when: y=x^((cos^(-1)x))

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) , when: y=x^(1//x)

Find (dy)/(dx) , when: y=2^(x).e^(3x)sin4x

Find (dy)/(dx) when 2x+3y=sin x

Find (dy)/(dx), if y=(cos x)^(x)+(sin x)^((1)/(x))

Find (dy)/(dx) , when: y=(sinx)^(x)+sin^(-1)sqrtx

Find (dy)/(dx) when x^(y)=e^(x+y)