Home
Class 12
MATHS
Find (dy)/(dx), when: y=(sinx)^(x)+sin...

Find `(dy)/(dx)`, when:
`y=(sinx)^(x)+sin^(-1)sqrtx`

Text Solution

Verified by Experts

The correct Answer is:
`(sinx)^(x).{x cot x+log sin x}+(1)/(2sqrt(x-x^(2)))`

Let `y=u+v,` where `u=(sinx)^(x) and v=sin^(-1)sqrtx`
Now, `u=(sinx)^(x) rArr logu=x log sin x`
`rArr (1)/(u).(du)/(dx)=x.(cosx)/(sinx)+log sin x.1`
`rArr (du)/(dx)=(sinx)^(x).{x cot +log sin x}.`
And, `v=sin^(-1)sqrtxrArr(dv)/(dx)=(1)/(sqrt(1-x)).(1)/(2)x^(-1//2)=(1)/(2sqrt(x-x^(2)))`
`therefore(dy)/(dx)=(du)/(dx)+(dv)/(dx).`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=sin(x^(x))

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)