Home
Class 12
MATHS
Find (dy)/(dx), when: y=x^(xcosx)+((x^...

Find `(dy)/(dx)`, when:
`y=x^(xcosx)+((x^(2)+1)/(x^(2)-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}, \] we will differentiate each term separately. ### Step 1: Differentiate \(x^{x \cos x}\) Let \(p = x^{x \cos x}\). To differentiate \(p\), we take the natural logarithm of both sides: \[ \log p = x \cos x \cdot \log x. \] Now, we differentiate both sides with respect to \(x\): \[ \frac{1}{p} \frac{dp}{dx} = \frac{d}{dx}(x \cos x \cdot \log x). \] Using the product rule on the right side: \[ \frac{d}{dx}(x \cos x \cdot \log x) = \cos x \cdot \log x + x \cdot (-\sin x) \cdot \log x + x \cos x \cdot \frac{1}{x}. \] This simplifies to: \[ \frac{d}{dx}(x \cos x \cdot \log x) = \cos x \log x - x \sin x \log x + \cos x. \] Now, substituting back, we have: \[ \frac{1}{p} \frac{dp}{dx} = \cos x \log x - x \sin x \log x + \cos x. \] Multiplying both sides by \(p\): \[ \frac{dp}{dx} = p \left(\cos x \log x - x \sin x \log x + \cos x\right). \] Substituting \(p = x^{x \cos x}\): \[ \frac{dp}{dx} = x^{x \cos x} \left(\cos x \log x - x \sin x \log x + \cos x\right). \] ### Step 2: Differentiate \(\frac{x^2 + 1}{x^2 - 1}\) Using the quotient rule, we have: \[ \frac{d}{dx}\left(\frac{x^2 + 1}{x^2 - 1}\right) = \frac{(x^2 - 1)(2x) - (x^2 + 1)(2x)}{(x^2 - 1)^2}. \] This simplifies to: \[ \frac{(2x)(x^2 - 1 - x^2 - 1)}{(x^2 - 1)^2} = \frac{(2x)(-2)}{(x^2 - 1)^2} = \frac{-4x}{(x^2 - 1)^2}. \] ### Step 3: Combine the results Now, we can combine the derivatives from both parts: \[ \frac{dy}{dx} = \frac{dp}{dx} + \frac{d}{dx}\left(\frac{x^2 + 1}{x^2 - 1}\right). \] Thus, \[ \frac{dy}{dx} = x^{x \cos x} \left(\cos x \log x - x \sin x \log x + \cos x\right) + \frac{-4x}{(x^2 - 1)^2}. \] ### Final Answer Therefore, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = x^{x \cos x} \left(\cos x \log x - x \sin x \log x + \cos x\right) - \frac{4x}{(x^2 - 1)^2}. \] ---

To find \(\frac{dy}{dx}\) for the function \[ y = x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}, \] we will differentiate each term separately. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(1//x)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) , when: y=x^((cos^(-1)x))

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find dy/dx when : y=x^(sinx-cosx)+(x^(2)-1)/(x^(2)+1)

Find (dy)/(dx) , when: y=(xcosx)^(x)+(x sin x)^(1//x)

Find (dy)/(dx) , when: y=(xcos^(-1)x)/(sqrt(1-x^(2)))

Find (dy)/(dx) when 2x+3y=sin x

Find (dy)/(dx) , when: y=(x^(2)sqrt(1+x))/((1+x^(2))^(3//2))

RS AGGARWAL-DIFFERENTIATION-Exercise 10F
  1. Find (dy)/(dx), when: y=(xcosx)^(x)+(x sin x)^(1//x)

    Text Solution

    |

  2. Find (dy)/(dx), when: y=(sinx)^(x)+sin^(-1)sqrtx

    Text Solution

    |

  3. Find (dy)/(dx), when: y=x^(xcosx)+((x^(2)+1)/(x^(2)-1))

    Text Solution

    |

  4. Find (dy)/(dx), when: y=e^(x)sin^(3)xcos^(4)x

    Text Solution

    |

  5. Find (dy)/(dx), when: y=2^(x).e^(3x)sin4x

    Text Solution

    |

  6. Find (dy)/(dx), when: y=x^(x).e^((2x+5))

    Text Solution

    |

  7. Find (dy)/(dx), when: y=(2x+3)^(5)(3x-5)^(7)(5x-1)^(3)

    Text Solution

    |

  8. Find (dy)/(dx), when: (cosx)^(y)=(cosy)^(x)

    Text Solution

    |

  9. Find (dy)/(dx), when: (tanx)^(y)=(tany)^(x)

    Text Solution

    |

  10. If y=x^(logx)+(logx)^x then find (dy)/(dx)

    Text Solution

    |

  11. if y=(sin^(- 1)x)/(sqrt(1-x^2)), prove that (1-x^2)(dy)/(dx)=x y+1

    Text Solution

    |

  12. Ify=sqrt(x+y), prove that (dy)/(dx)=(1)/((2y-1)).

    Text Solution

    |

  13. x^ay^b=(x+y)^(a+b) prove that dy/dx=y/x

    Text Solution

    |

  14. If (x^(x)+y^(x))=1," show that "(dy)/(dx)=-{(x^(x)(1+logx)+y^(x)(logy)...

    Text Solution

    |

  15. If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(...

    Text Solution

    |

  16. If y=log[x+sqrt((1+x^2)]], prove that sqrt((1+x^2)) (dy)/(dx)=1.

    Text Solution

    |

  17. "If "y=logsinsqrt(x^(2)+1)," prove that "(dy)/(dx)=(x cotsqrt(x^(2)+1)...

    Text Solution

    |

  18. "If "y=logsqrt((1-cosx)/(1+cosx))", show that "(dy)/(dx)="cosec x".

    Text Solution

    |

  19. If y=logtan(pi/4+x/2),\ show that (dy)/(dx)=secxdot Also find the ...

    Text Solution

    |

  20. is y=sqrt((1-sin2x)/(1+sin2x)), show that (dy)/(dx)+sec^2(pi/4-x)=0

    Text Solution

    |