Home
Class 12
MATHS
Find (dy)/(dx), when: (tanx)^(y)=(tany...

Find `(dy)/(dx)`, when:
`(tanx)^(y)=(tany)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \((\tan x)^y = (\tan y)^x\), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln((\tan x)^y) = \ln((\tan y)^x) \] ### Step 2: Apply the logarithmic identity Using the property of logarithms \(\ln(a^b) = b \ln(a)\), we can rewrite the equation: \[ y \ln(\tan x) = x \ln(\tan y) \] ### Step 3: Differentiate both sides with respect to \(x\) Now we differentiate both sides with respect to \(x\). We will use the product rule on both sides: \[ \frac{d}{dx}(y \ln(\tan x)) = \frac{d}{dx}(x \ln(\tan y)) \] Applying the product rule: \[ \frac{dy}{dx} \ln(\tan x) + y \frac{d}{dx}(\ln(\tan x)) = \ln(\tan y) + x \frac{d}{dx}(\ln(\tan y)) \] ### Step 4: Differentiate \(\ln(\tan x)\) and \(\ln(\tan y)\) Using the chain rule, we find: \[ \frac{d}{dx}(\ln(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] And similarly, \[ \frac{d}{dx}(\ln(\tan y)) = \frac{1}{\tan y} \cdot \frac{dy}{dx} \sec^2 y \] ### Step 5: Substitute the derivatives back into the equation Substituting these derivatives back into our differentiated equation gives: \[ \frac{dy}{dx} \ln(\tan x) + y \frac{\sec^2 x}{\tan x} = \ln(\tan y) + x \left(\frac{1}{\tan y} \cdot \frac{dy}{dx} \sec^2 y\right) \] ### Step 6: Rearranging the equation Now, we will rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \ln(\tan x) - x \frac{\sec^2 y}{\tan y} \frac{dy}{dx} = \ln(\tan y) - y \frac{\sec^2 x}{\tan x} \] ### Step 7: Factor out \(\frac{dy}{dx}\) Factoring out \(\frac{dy}{dx}\) gives: \[ \frac{dy}{dx} \left(\ln(\tan x) - x \frac{\sec^2 y}{\tan y}\right) = \ln(\tan y) - y \frac{\sec^2 x}{\tan x} \] ### Step 8: Solve for \(\frac{dy}{dx}\) Finally, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\ln(\tan y) - y \frac{\sec^2 x}{\tan x}}{\ln(\tan x) - x \frac{\sec^2 y}{\tan y}} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\ln(\tan y) - y \frac{\sec^2 x}{\tan x}}{\ln(\tan x) - x \frac{\sec^2 y}{\tan y}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=(tanx)^(cotx)

Find (dy)/(dx) , when: y=(tanx)^(1//x)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx) , when: y=x^(1//x)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) when : y=(x+tanx)/(tanx)

Find (dy)/(dx) , when y=sqrt(x)

RS AGGARWAL-DIFFERENTIATION-Exercise 10F
  1. Find (dy)/(dx), when: y=(2x+3)^(5)(3x-5)^(7)(5x-1)^(3)

    Text Solution

    |

  2. Find (dy)/(dx), when: (cosx)^(y)=(cosy)^(x)

    Text Solution

    |

  3. Find (dy)/(dx), when: (tanx)^(y)=(tany)^(x)

    Text Solution

    |

  4. If y=x^(logx)+(logx)^x then find (dy)/(dx)

    Text Solution

    |

  5. if y=(sin^(- 1)x)/(sqrt(1-x^2)), prove that (1-x^2)(dy)/(dx)=x y+1

    Text Solution

    |

  6. Ify=sqrt(x+y), prove that (dy)/(dx)=(1)/((2y-1)).

    Text Solution

    |

  7. x^ay^b=(x+y)^(a+b) prove that dy/dx=y/x

    Text Solution

    |

  8. If (x^(x)+y^(x))=1," show that "(dy)/(dx)=-{(x^(x)(1+logx)+y^(x)(logy)...

    Text Solution

    |

  9. If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(...

    Text Solution

    |

  10. If y=log[x+sqrt((1+x^2)]], prove that sqrt((1+x^2)) (dy)/(dx)=1.

    Text Solution

    |

  11. "If "y=logsinsqrt(x^(2)+1)," prove that "(dy)/(dx)=(x cotsqrt(x^(2)+1)...

    Text Solution

    |

  12. "If "y=logsqrt((1-cosx)/(1+cosx))", show that "(dy)/(dx)="cosec x".

    Text Solution

    |

  13. If y=logtan(pi/4+x/2),\ show that (dy)/(dx)=secxdot Also find the ...

    Text Solution

    |

  14. is y=sqrt((1-sin2x)/(1+sin2x)), show that (dy)/(dx)+sec^2(pi/4-x)=0

    Text Solution

    |

  15. "If "y=logsqrt((1+cos^(2)x)/(1-e^(2x)))", show that "(dy)/(dx)=(e^(2x)...

    Text Solution

    |

  16. "If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx...

    Text Solution

    |

  17. "If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cos...

    Text Solution

    |

  18. "If "y=(tanx)^(cotx)+(cotx)^(tanx)",prove that "(dy)/(dx)=(tanx)^(cotx...

    Text Solution

    |

  19. "If "y=x^(cos)+(cosx)^(x)", prove that "(dy)/(dx)=x^(cosx).{(cosx)/(x)...

    Text Solution

    |

  20. If y=x^(logx)+(logx)^x then find (dy)/(dx)

    Text Solution

    |