Home
Class 12
MATHS
Differentiate tan^(-1)sqrt((1-x^(2))/(1+...

Differentiate `tan^(-1)sqrt((1-x^(2))/(1+x^(2)))` with respect to `cos^(-1)x^(2).`

Text Solution

AI Generated Solution

To differentiate \( y = \tan^{-1} \left( \sqrt{\frac{1 - x^2}{1 + x^2}} \right) \) with respect to \( \theta = \cos^{-1}(x^2) \), we can follow these steps: ### Step 1: Rewrite the expression Let \( y = \tan^{-1} \left( \sqrt{\frac{1 - x^2}{1 + x^2}} \right) \). ### Step 2: Substitute \( x^2 \) in terms of \( \theta \) Since \( \theta = \cos^{-1}(x^2) \), we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10I|51 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

If x in((1)/(sqrt(2)),1), differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) with respect to cos^(-1)(2x sqrt(1-x^(2)))

Differentiate tan^(-1)[(sqrt(1+x^(2))-1)/(x)] with respect to x

Differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) with respect to cos^(-1)(2x sqrt(1-x^(2))), when x!=0

Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x,x!=0

Differentiate tan^(-1)((1)/(1-x+x^(2)))

Differentiate tan^(-1)((2x)/(1-x^(2))) with respect to cos^(-1)((1-x^(2))/(1+x^(2))), if ^(@)0

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to sin^(-1)((2x)/(1+x^(2))), if -1