Home
Class 12
MATHS
Find the second derivative of: (i)x si...

Find the second derivative of:
`(i)x sin x" "(ii)e^(2x)cos 3x" "(iii)x^(3)logx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the given functions, we will follow the steps of differentiation carefully for each part. ### Part (i): \( y = x \sin x \) **Step 1: First Derivative** Using the product rule: \[ \frac{dy}{dx} = u'v + uv' \] where \( u = x \) and \( v = \sin x \). Calculating \( u' \) and \( v' \): - \( u' = 1 \) - \( v' = \cos x \) Now applying the product rule: \[ \frac{dy}{dx} = (1)(\sin x) + (x)(\cos x) = \sin x + x \cos x \] **Step 2: Second Derivative** Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(\sin x + x \cos x) \] Using the product rule again for \( x \cos x \): \[ \frac{d^2y}{dx^2} = \cos x + \left(1 \cdot \cos x + x \cdot (-\sin x)\right) \] Combining terms: \[ \frac{d^2y}{dx^2} = \cos x + \cos x - x \sin x = 2\cos x - x \sin x \] ### Part (ii): \( y = e^{2x} \cos(3x) \) **Step 1: First Derivative** Using the product rule: \[ \frac{dy}{dx} = u'v + uv' \] where \( u = e^{2x} \) and \( v = \cos(3x) \). Calculating \( u' \) and \( v' \): - \( u' = 2e^{2x} \) - \( v' = -3\sin(3x) \) Now applying the product rule: \[ \frac{dy}{dx} = (2e^{2x})(\cos(3x)) + (e^{2x})(-3\sin(3x)) = 2e^{2x} \cos(3x) - 3e^{2x} \sin(3x) \] **Step 2: Second Derivative** Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(2e^{2x} \cos(3x) - 3e^{2x} \sin(3x)) \] Using the product rule on both terms: \[ \frac{d^2y}{dx^2} = \left(2 \cdot 2e^{2x} \cos(3x) + 2e^{2x}(-3\sin(3x))\right) - \left(3 \cdot 2e^{2x} \sin(3x) + 3e^{2x}(3\cos(3x))\right) \] Simplifying: \[ = 4e^{2x} \cos(3x) - 6e^{2x} \sin(3x) - 6e^{2x} \sin(3x) - 9e^{2x} \cos(3x) \] Combining like terms: \[ = (4 - 9)e^{2x} \cos(3x) - 12e^{2x} \sin(3x) = -5e^{2x} \cos(3x) - 12e^{2x} \sin(3x) \] ### Part (iii): \( y = x^3 \log x \) **Step 1: First Derivative** Using the product rule: \[ \frac{dy}{dx} = u'v + uv' \] where \( u = x^3 \) and \( v = \log x \). Calculating \( u' \) and \( v' \): - \( u' = 3x^2 \) - \( v' = \frac{1}{x} \) Now applying the product rule: \[ \frac{dy}{dx} = (3x^2)(\log x) + (x^3)\left(\frac{1}{x}\right) = 3x^2 \log x + x^2 \] **Step 2: Second Derivative** Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(3x^2 \log x + x^2) \] Using the product rule on \( 3x^2 \log x \): \[ = 3(2x \log x + x) + 2x = 6x \log x + 3x + 2x = 6x \log x + 5x \] ### Final Answers: 1. \( \frac{d^2y}{dx^2} = 2\cos x - x \sin x \) 2. \( \frac{d^2y}{dx^2} = -5e^{2x} \cos(3x) - 12e^{2x} \sin(3x) \) 3. \( \frac{d^2y}{dx^2} = 6x \log x + 5x \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the second derivative of e^(3x)sin4x.

Find the second derivative of sin 3x cos 5x .

Find second order derivative of e^(x)sin5x

Find the second derivative of : (i) x^(11)" "(ii)5^(x)" "(iii)tanx" "(iv)cos^(-1)x

Find second order derivative of e^(6x)cos3x

Find the second derivatives of the following functions : e^(6x)cos3x

Find the second - order derivative of : (i)x^(10)" "(ii)logx" "(iii)tan^(-1)x

Find the derivative of (i)(x^(5)-cos x)/(sin x) (ii) (x+cos x)/(tan x)

Find the second derivatives of the following functions : e^(x)sin5x

Find the second order derivatives of the functions given.e^(6x)cos3x