Home
Class 12
MATHS
Find the value of lambda for which the v...

Find the value of `lambda` for which the vectors `vec(a), vec(b), vec(c)` are coplanar, where
(i) `vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k))`
(ii) `vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k)`
(iii) `vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the vectors \( \vec{a}, \vec{b}, \vec{c} \) are coplanar, we need to set the scalar triple product of the vectors equal to zero. The scalar triple product can be represented as the determinant of a matrix formed by the components of the vectors. ### Part (i) Given: - \( \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \) - \( \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} \) - \( \vec{c} = 3\hat{i} + \lambda \hat{j} + 5\hat{k} \) We set up the determinant as follows: \[ \begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & \lambda & 5 \end{vmatrix} = 0 \] Now, we compute the determinant: 1. **Expanding the determinant along the first row:** \[ = 2 \begin{vmatrix} 2 & 3 \\ \lambda & 5 \end{vmatrix} - (-1) \begin{vmatrix} 1 & 3 \\ 3 & 5 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 3 & \lambda \end{vmatrix} \] 2. **Calculating the smaller 2x2 determinants:** \[ = 2(2 \cdot 5 - 3 \cdot \lambda) + (1 \cdot 5 - 3 \cdot 3) + (1 \cdot \lambda - 2 \cdot 3) \] \[ = 2(10 - 3\lambda) + (5 - 9) + (\lambda - 6) \] \[ = 20 - 6\lambda - 4 + \lambda - 6 \] \[ = 20 - 10 - 6\lambda + \lambda \] \[ = 10 - 5\lambda \] 3. **Setting the determinant equal to zero:** \[ 10 - 5\lambda = 0 \] \[ 5\lambda = 10 \] \[ \lambda = 2 \] ### Part (ii) Given: - \( \vec{a} = \lambda \hat{i} - 10 \hat{j} - 5 \hat{k} \) - \( \vec{b} = -7 \hat{i} - 5 \hat{j} \) - \( \vec{c} = \hat{i} - 4 \hat{j} - 3 \hat{k} \) Setting up the determinant: \[ \begin{vmatrix} \lambda & -10 & -5 \\ -7 & -5 & 0 \\ 1 & -4 & -3 \end{vmatrix} = 0 \] 1. **Expanding the determinant:** \[ = \lambda \begin{vmatrix} -5 & 0 \\ -4 & -3 \end{vmatrix} - (-10) \begin{vmatrix} -7 & 0 \\ 1 & -3 \end{vmatrix} - 5 \begin{vmatrix} -7 & -5 \\ 1 & -4 \end{vmatrix} \] 2. **Calculating the smaller 2x2 determinants:** \[ = \lambda(-5 \cdot -3 - 0 \cdot -4) + 10(-7 \cdot -3 - 0 \cdot 1) - 5(-7 \cdot -4 - -5 \cdot 1) \] \[ = \lambda(15) + 10(21) - 5(28 - 5) \] \[ = 15\lambda + 210 - 5(23) \] \[ = 15\lambda + 210 - 115 \] \[ = 15\lambda + 95 \] 3. **Setting the determinant equal to zero:** \[ 15\lambda + 95 = 0 \] \[ 15\lambda = -95 \] \[ \lambda = -\frac{19}{3} \] ### Part (iii) Given: - \( \vec{a} = \hat{i} - \hat{j} + \hat{k} \) - \( \vec{b} = 2\hat{i} + \hat{j} - \hat{k} \) - \( \vec{c} = \lambda \hat{i} - \hat{j} + \lambda \hat{k} \) Setting up the determinant: \[ \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & -1 & \lambda \end{vmatrix} = 0 \] 1. **Expanding the determinant:** \[ = 1 \begin{vmatrix} 1 & -1 \\ -1 & \lambda \end{vmatrix} - (-1) \begin{vmatrix} 2 & -1 \\ \lambda & \lambda \end{vmatrix} + 1 \begin{vmatrix} 2 & 1 \\ \lambda & -1 \end{vmatrix} \] 2. **Calculating the smaller 2x2 determinants:** \[ = 1(\lambda - 1) + (2\lambda + 1) + (-2 - \lambda) \] \[ = \lambda - 1 + 2\lambda + 1 - 2 - \lambda \] \[ = 2\lambda - 2 \] 3. **Setting the determinant equal to zero:** \[ 2\lambda - 2 = 0 \] \[ 2\lambda = 2 \] \[ \lambda = 1 \] ### Summary of Results - For part (i), \( \lambda = 2 \) - For part (ii), \( \lambda = -\frac{19}{3} \) - For part (iii), \( \lambda = 1 \)
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Exercise 25B|32 Videos
  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Objective Questions|34 Videos
  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Objective Questions|34 Videos
  • PROBABILITY DISTRIBUTION

    RS AGGARWAL|Exercise Exercise 32|32 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b) = -2hat(i)+3hat(j)-4hat(k) and vec(c)=hat(i)-3hat(j)+5hat(k) (ii) vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k)and vec(c)=7hat(j)+3hat(k) (iii) vec(a)=2hat(i)-hat(j)+2hat(k), vec(b)=hat(i)+2hat(j)-3hat(k) and vec(c)=3hat(i)-4hat(j)+7hat(k)

Find [vec(a)vec(b)vec(c)] , when (i) vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j)+2hat(k) (ii) vec(a)=2hat(i)-3hat(j)+4hat(k), vec(b)=hat(i)+2hat(j)-hat(k) and vec(c)=3hat(i)-hat(j)+2hat(k) (iii) vec(a) = 2 hat(i)-3hat(j), vec(b)=hat(i)+hat(j)-hat(k) and vec(c)=3hat(i)-hat(k)

Find the value of lambda for which vec(a) and vec(b) are perpendicular, where (i) vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=(hat(i)-2hat(j)+3hat(k)) (ii) vec(a)=3hat(i)-hat(j)+4hat(k) and vec(b)=- lamnda hat(i)+3 hat(j)+3 hat(k) (iii) vec(A)=2hat(i)+4hat(j)-hat(k) and vec(b)=3 hat(i)-2 hat(j)+lambda hat(k) (iv) vec(a)=3 hat(i)+2 hat(j)-5 hat(k) and vec(b)=-5 hat(j)+lambda hat(k)

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

Find [vec(a)vec(b)vec(c )] if vec(a)=vec(i)-2hat(j)+3hat(k), vec(b)=2hat(i)-3hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)-2hat(k) .