Home
Class 12
MATHS
If vec(a)=(hat(i)+2hat(j)-3hat(k)) and v...

If `vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k))` then the angle between `(vec(a)+vec(b))` and `(vec(a)-vec(b))` is

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(2)`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\), we can follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + 2\hat{j} - 3\hat{k} \] \[ \vec{b} = 3\hat{i} - \hat{j} + 2\hat{k} \] ### Step 2: Calculate \(\vec{a} + \vec{b}\) \[ \vec{a} + \vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) + (3\hat{i} - \hat{j} + 2\hat{k}) \] Combine the components: \[ = (1 + 3)\hat{i} + (2 - 1)\hat{j} + (-3 + 2)\hat{k} \] \[ = 4\hat{i} + 1\hat{j} - 1\hat{k} \] Thus, \[ \vec{a} + \vec{b} = 4\hat{i} + \hat{j} - \hat{k} \] ### Step 3: Calculate \(\vec{a} - \vec{b}\) \[ \vec{a} - \vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) - (3\hat{i} - \hat{j} + 2\hat{k}) \] Combine the components: \[ = (1 - 3)\hat{i} + (2 + 1)\hat{j} + (-3 - 2)\hat{k} \] \[ = -2\hat{i} + 3\hat{j} - 5\hat{k} \] Thus, \[ \vec{a} - \vec{b} = -2\hat{i} + 3\hat{j} - 5\hat{k} \] ### Step 4: Calculate the dot product \((\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})\) \[ (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = (4\hat{i} + \hat{j} - \hat{k}) \cdot (-2\hat{i} + 3\hat{j} - 5\hat{k}) \] Calculating the dot product: \[ = 4(-2) + 1(3) + (-1)(-5) \] \[ = -8 + 3 + 5 \] \[ = 0 \] ### Step 5: Calculate the magnitudes 1. Magnitude of \(\vec{a} + \vec{b}\): \[ |\vec{a} + \vec{b}| = \sqrt{(4)^2 + (1)^2 + (-1)^2} = \sqrt{16 + 1 + 1} = \sqrt{18} \] 2. Magnitude of \(\vec{a} - \vec{b}\): \[ |\vec{a} - \vec{b}| = \sqrt{(-2)^2 + (3)^2 + (-5)^2} = \sqrt{4 + 9 + 25} = \sqrt{38} \] ### Step 6: Use the formula for the angle \(\theta\) The cosine of the angle \(\theta\) is given by: \[ \cos(\theta) = \frac{(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})}{|\vec{a} + \vec{b}| \cdot |\vec{a} - \vec{b}|} \] Substituting the values: \[ \cos(\theta) = \frac{0}{\sqrt{18} \cdot \sqrt{38}} = 0 \] ### Step 7: Determine the angle Since \(\cos(\theta) = 0\), we have: \[ \theta = 90^\circ \] ### Final Answer The angle between \((\vec{a} + \vec{b})\) and \((\vec{a} - \vec{b})\) is \(90^\circ\). ---

To find the angle between the vectors \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\), we can follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + 2\hat{j} - 3\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Exercise 25B|32 Videos
  • PROBABILITY DISTRIBUTION

    RS AGGARWAL|Exercise Exercise 32|32 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then calculate the angle between (2vec(a)+vec(b)) and (vec(a)+2vec(b)) .

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a) = 5 hat(i) - hat(j) - 3 hat(k) and vec(b) = hat(i) + 3 hat(j) - 5 hat(k) , find the angle between vec(a) and vec(b) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Given the vectors vec(A)=2hat(i)+3hat(j)-hat(k) vec(B)=3hat(i)-2hat(j)-2hat(k) & " " vec(c)=phat(i)+phat(j)+2phat(k) Find the angle between (vec(A)-vec(B)) & vec(C)

RS AGGARWAL-PRODUCT OF THREE VECTORS-Objective Questions
  1. If vec(a) and vec(B) are two vectors such that |vec(a)|=|vec(b)|=sqrt(...

    Text Solution

    |

  2. Find the angle between the vectors hat i-2 hat j+3 hat ka n d3 hat...

    Text Solution

    |

  3. If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k))...

    Text Solution

    |

  4. If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k))...

    Text Solution

    |

  5. If vec(a)=(2hat(i)+4hat(j)-k^(2)) and vec(b)=(3hat(i)-2hat(j)+lambda h...

    Text Solution

    |

  6. What is the projection of vec(a)=(2hat(i)-hat(j)+hat(k)) on vec(b)=(h...

    Text Solution

    |

  7. If |veca + vecb| = |veca - vecb|, then

    Text Solution

    |

  8. If vec(a) and vec(b) are mutually perpendicular unit vectors then (3ve...

    Text Solution

    |

  9. If the vectors vec(a)=3hat(i)+hat(j)-2hatk and vec(b)=hat(i)+lambda ha...

    Text Solution

    |

  10. If theta is the angle between two unit vectors hat(a) and hat(b) then ...

    Text Solution

    |

  11. If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k))...

    Text Solution

    |

  12. If vec(a)=(hat(i)-2hat(j)+3hat(k)) and vec(b)=(hat(i)-3hat(k)) then |v...

    Text Solution

    |

  13. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  14. If |veca|=sqrt(26), |vecb|=7and| veca xx vecb|=35, then veca*vecb =

    Text Solution

    |

  15. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  16. Find the area a parallelogram whose diagonals are vec a=3 hat i+ h...

    Text Solution

    |

  17. Two adjacent sides of a triangle are represented by the vectors vec(a...

    Text Solution

    |

  18. The unit vector normal to the plane containing vec(a)=(hat(i)-hat(j)-...

    Text Solution

    |

  19. If vec a , vec b , and vec c are unit vectors such that vec a+ vec b...

    Text Solution

    |

  20. If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit ve...

    Text Solution

    |