Home
Class 12
MATHS
What is the projection of vec(a)=(2hat(i...

What is the projection of `vec(a)=(2hat(i)-hat(j)+hat(k)) ` on `vec(b)=(hat(i)-2hat(j)+hat(k))?`

A

`(2)/(sqrt(3))`

B

`(4)/(sqrt(5))`

C

`(5)/(sqrt(6))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector **a** on vector **b**, we will use the formula for the projection of one vector onto another. ### Step-by-Step Solution: 1. **Identify the Vectors:** - Let **a** = \(2\hat{i} - \hat{j} + \hat{k}\) - Let **b** = \(\hat{i} - 2\hat{j} + \hat{k}\) 2. **Calculate the Dot Product \( \mathbf{a} \cdot \mathbf{b} \):** \[ \mathbf{a} \cdot \mathbf{b} = (2)(1) + (-1)(-2) + (1)(1) \] \[ = 2 + 2 + 1 = 5 \] 3. **Calculate the Magnitude of Vector \( \mathbf{b} \):** \[ |\mathbf{b}| = \sqrt{(1)^2 + (-2)^2 + (1)^2} \] \[ = \sqrt{1 + 4 + 1} = \sqrt{6} \] 4. **Use the Projection Formula:** The projection of **a** onto **b** is given by: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b} \] First, we need \( |\mathbf{b}|^2 \): \[ |\mathbf{b}|^2 = 6 \] Now substitute the values: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{5}{6} \mathbf{b} \] Substitute **b**: \[ = \frac{5}{6} (\hat{i} - 2\hat{j} + \hat{k}) \] \[ = \frac{5}{6} \hat{i} - \frac{10}{6} \hat{j} + \frac{5}{6} \hat{k} \] \[ = \frac{5}{6} \hat{i} - \frac{5}{3} \hat{j} + \frac{5}{6} \hat{k} \] ### Final Answer: The projection of vector **a** on vector **b** is: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{5}{6} \hat{i} - \frac{5}{3} \hat{j} + \frac{5}{6} \hat{k} \]

To find the projection of vector **a** on vector **b**, we will use the formula for the projection of one vector onto another. ### Step-by-Step Solution: 1. **Identify the Vectors:** - Let **a** = \(2\hat{i} - \hat{j} + \hat{k}\) - Let **b** = \(\hat{i} - 2\hat{j} + \hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Exercise 25B|32 Videos
  • PROBABILITY DISTRIBUTION

    RS AGGARWAL|Exercise Exercise 32|32 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos

Similar Questions

Explore conceptually related problems

Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) , if vec(a)=(2 hat(i)-hat(j)+3hat(k)) and vec(b)=(3hat(i)+hat(j)+2hat(k)) .

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

Find the scalar projection of vec(b) on vec(a) , when : vec(a)=2hat(i)+2hat(j)-hat(k) and vec(b)=2hat(i)-hat(j)-4hat(k)

RS AGGARWAL-PRODUCT OF THREE VECTORS-Objective Questions
  1. If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k))...

    Text Solution

    |

  2. If vec(a)=(2hat(i)+4hat(j)-k^(2)) and vec(b)=(3hat(i)-2hat(j)+lambda h...

    Text Solution

    |

  3. What is the projection of vec(a)=(2hat(i)-hat(j)+hat(k)) on vec(b)=(h...

    Text Solution

    |

  4. If |veca + vecb| = |veca - vecb|, then

    Text Solution

    |

  5. If vec(a) and vec(b) are mutually perpendicular unit vectors then (3ve...

    Text Solution

    |

  6. If the vectors vec(a)=3hat(i)+hat(j)-2hatk and vec(b)=hat(i)+lambda ha...

    Text Solution

    |

  7. If theta is the angle between two unit vectors hat(a) and hat(b) then ...

    Text Solution

    |

  8. If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k))...

    Text Solution

    |

  9. If vec(a)=(hat(i)-2hat(j)+3hat(k)) and vec(b)=(hat(i)-3hat(k)) then |v...

    Text Solution

    |

  10. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  11. If |veca|=sqrt(26), |vecb|=7and| veca xx vecb|=35, then veca*vecb =

    Text Solution

    |

  12. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  13. Find the area a parallelogram whose diagonals are vec a=3 hat i+ h...

    Text Solution

    |

  14. Two adjacent sides of a triangle are represented by the vectors vec(a...

    Text Solution

    |

  15. The unit vector normal to the plane containing vec(a)=(hat(i)-hat(j)-...

    Text Solution

    |

  16. If vec a , vec b , and vec c are unit vectors such that vec a+ vec b...

    Text Solution

    |

  17. If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit ve...

    Text Solution

    |

  18. Prove that (i) [hat(i)hat(j)hat(k)]=[hat(j)hat(k)hat(i)]=[hat(k)hat(...

    Text Solution

    |

  19. Find the volume of the parallelepiped whose coterminous edges are r...

    Text Solution

    |

  20. If the volume of a parallelepied having vec(a)=(5hat(i)-4hat(j)+hat(k)...

    Text Solution

    |