Home
Class 12
MATHS
The unit vector normal to the plane cont...

The unit vector normal to the plane containing `vec(a)=(hat(i)-hat(j)-hat(k)) and vec(b)=(hat(i)+hat(j)+hat(k)) ` is

A

`(hat(j)-hat(k))`

B

`(-hat(j)+hat(k))`

C

`(1)/(sqrt(2))(-hat(j)+hat(k))`

D

`(1)/(sqrt(2))(-hat(i)+hat(k))`

Text Solution

Verified by Experts

The correct Answer is:
C

`(vec(a)xxvec(b))=|(hat(i),hat(j),hat(k)),(1,-1,-1),(1,1,1)|=(-2hat(j)+2hat(k))`
`rArr |vec(a)xxvec(b)|=sqrt((-2)^(2)+2^(2))=sqrt(8)=2sqrt(2)`
`rArr ` required vector`=(2(-hat(j)+hat(k)))/(2sqrt(2))=(1)/(sqrt(2))(-hat(j)+hat(k))`.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Exercise 25B|32 Videos
  • PROBABILITY DISTRIBUTION

    RS AGGARWAL|Exercise Exercise 32|32 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find the unit vectors perpendicular to the plane of the vectors vec(a) = 2 hat(i) - 6 hat(j)- 3 hat(k) and vec(b)= 4 hat(i) + 3 hat(j) - hat(k).

Find a unit vector perpendicular to each one of the vectors vec(a)= ( 4 hat(i) - hat(j)+ 3 hat(k)) and vec(b)=(2hat(i) + 2 hat(j)- hat(k)).

Which one of the following is the unit vector perpendicular to both vec(a)=-hat(i)+hat(j)+hat(k) and vec(b)=hat(i)-hat(j)+hat(k) ?

Find a unit vector perpendicular to the lane containing the vectors vec a=2hat i+hat j+hat k and vec b=hat i+2hat j+hat k

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .

The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is

RS AGGARWAL-PRODUCT OF THREE VECTORS-Objective Questions
  1. If vec(a) and vec(b) are mutually perpendicular unit vectors then (3ve...

    Text Solution

    |

  2. If the vectors vec(a)=3hat(i)+hat(j)-2hatk and vec(b)=hat(i)+lambda ha...

    Text Solution

    |

  3. If theta is the angle between two unit vectors hat(a) and hat(b) then ...

    Text Solution

    |

  4. If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k))...

    Text Solution

    |

  5. If vec(a)=(hat(i)-2hat(j)+3hat(k)) and vec(b)=(hat(i)-3hat(k)) then |v...

    Text Solution

    |

  6. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  7. If |veca|=sqrt(26), |vecb|=7and| veca xx vecb|=35, then veca*vecb =

    Text Solution

    |

  8. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  9. Find the area a parallelogram whose diagonals are vec a=3 hat i+ h...

    Text Solution

    |

  10. Two adjacent sides of a triangle are represented by the vectors vec(a...

    Text Solution

    |

  11. The unit vector normal to the plane containing vec(a)=(hat(i)-hat(j)-...

    Text Solution

    |

  12. If vec a , vec b , and vec c are unit vectors such that vec a+ vec b...

    Text Solution

    |

  13. If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit ve...

    Text Solution

    |

  14. Prove that (i) [hat(i)hat(j)hat(k)]=[hat(j)hat(k)hat(i)]=[hat(k)hat(...

    Text Solution

    |

  15. Find the volume of the parallelepiped whose coterminous edges are r...

    Text Solution

    |

  16. If the volume of a parallelepied having vec(a)=(5hat(i)-4hat(j)+hat(k)...

    Text Solution

    |

  17. It is given that the vectorsvec(a)=(2hat(i)-2hat(k)), vec(b)=hat(i)+(l...

    Text Solution

    |

  18. Which of the following is meaningless?

    Text Solution

    |

  19. Prove that vecA.(vecAxxvecB)=0

    Text Solution

    |

  20. For any three vectors vec a,vec b,vec c, (vec a-vec b)* (vec b-vec c)x...

    Text Solution

    |