Home
Class 12
MATHS
It is given that the vectorsvec(a)=(2hat...

It is given that the vectors`vec(a)=(2hat(i)-2hat(k)), vec(b)=hat(i)+(lambda +1)hat(j) and vec(c)=(4hat(j)+2hat(k))` are coplanar. Then, the value of `lambda` is

A

`(1)/(2)`

B

`(1)/(3)`

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the vectors \( \vec{a} = 2\hat{i} - 2\hat{k} \), \( \vec{b} = \hat{i} + (\lambda + 1)\hat{j} \), and \( \vec{c} = 4\hat{j} + 2\hat{k} \) are coplanar, we need to use the condition that the scalar triple product of the vectors is zero. ### Step 1: Write the vectors in component form We have: - \( \vec{a} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \) - \( \vec{b} = \begin{pmatrix} 1 \\ \lambda + 1 \\ 0 \end{pmatrix} \) - \( \vec{c} = \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix} \) ### Step 2: Set up the scalar triple product The scalar triple product can be calculated using the determinant of a matrix formed by the vectors: \[ \text{Scalar Triple Product} = \begin{vmatrix} 2 & 0 & -2 \\ 1 & \lambda + 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant We will calculate the determinant using the formula for a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the elements of the first row, \( d, e, f \) are the elements of the second row, and \( g, h, i \) are the elements of the third row. Substituting the values: \[ \text{Det} = 2 \begin{vmatrix} \lambda + 1 & 0 \\ 4 & 2 \end{vmatrix} - 0 + (-2) \begin{vmatrix} 1 & \lambda + 1 \\ 0 & 4 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \lambda + 1 & 0 \\ 4 & 2 \end{vmatrix} = (\lambda + 1) \cdot 2 - 0 \cdot 4 = 2(\lambda + 1) \) 2. \( \begin{vmatrix} 1 & \lambda + 1 \\ 0 & 4 \end{vmatrix} = 1 \cdot 4 - 0 \cdot (\lambda + 1) = 4 \) Thus, substituting back: \[ \text{Det} = 2(2(\lambda + 1)) - 2(4) = 4(\lambda + 1) - 8 \] ### Step 4: Set the determinant to zero for coplanarity For the vectors to be coplanar, we set the determinant to zero: \[ 4(\lambda + 1) - 8 = 0 \] ### Step 5: Solve for \( \lambda \) \[ 4(\lambda + 1) = 8 \] \[ \lambda + 1 = 2 \] \[ \lambda = 1 \] ### Conclusion The value of \( \lambda \) is \( 1 \).

To find the value of \( \lambda \) such that the vectors \( \vec{a} = 2\hat{i} - 2\hat{k} \), \( \vec{b} = \hat{i} + (\lambda + 1)\hat{j} \), and \( \vec{c} = 4\hat{j} + 2\hat{k} \) are coplanar, we need to use the condition that the scalar triple product of the vectors is zero. ### Step 1: Write the vectors in component form We have: - \( \vec{a} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \) - \( \vec{b} = \begin{pmatrix} 1 \\ \lambda + 1 \\ 0 \end{pmatrix} \) - \( \vec{c} = \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix} \) ...
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Exercise 25B|32 Videos
  • PROBABILITY DISTRIBUTION

    RS AGGARWAL|Exercise Exercise 32|32 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Find the value of lambda so that the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)+2hat(j)-3hat(k) a nd vec(c)=hat(j)+lambda hat(k) are coplanar.

Show that the vectors vec a=-2hat i-2hat j+4hat k,vec b=-2hat i+4hat j-2hat k and vec c=4hat i-2hat j-2hat k are coplanar.

The vectors vec a=hat i-2hat j+3hat k,vec b=-2hat i+3hat j-4hat k and vec c=hat i-3hat j+lambdahat k are coplanar if the value of lambda is

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

If vectors vec a=hat i+2hat j-hat k,vec b=2hat i-hat j+hat k and vec c=lambdahat i+hat j+2widehat k are coplanar,then find the value of (lambda-4)

If vectors vec(a) = 3 hat(i) + hat(j) - 2 hat(k) and vec(b) = hat(i) + lambda(j) - 3 hat (k) are perpendicular to each other , find the value of lambda .

The vectors given by vec a=2hat(i)-2hat(j)+lambdahatk, vec b=-hati-hat j-hat k and vec c = 2hati-4hatj+1hatk are coplanar, then, lambda=?

RS AGGARWAL-PRODUCT OF THREE VECTORS-Objective Questions
  1. If vec(a) and vec(b) are mutually perpendicular unit vectors then (3ve...

    Text Solution

    |

  2. If the vectors vec(a)=3hat(i)+hat(j)-2hatk and vec(b)=hat(i)+lambda ha...

    Text Solution

    |

  3. If theta is the angle between two unit vectors hat(a) and hat(b) then ...

    Text Solution

    |

  4. If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k))...

    Text Solution

    |

  5. If vec(a)=(hat(i)-2hat(j)+3hat(k)) and vec(b)=(hat(i)-3hat(k)) then |v...

    Text Solution

    |

  6. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  7. If |veca|=sqrt(26), |vecb|=7and| veca xx vecb|=35, then veca*vecb =

    Text Solution

    |

  8. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  9. Find the area a parallelogram whose diagonals are vec a=3 hat i+ h...

    Text Solution

    |

  10. Two adjacent sides of a triangle are represented by the vectors vec(a...

    Text Solution

    |

  11. The unit vector normal to the plane containing vec(a)=(hat(i)-hat(j)-...

    Text Solution

    |

  12. If vec a , vec b , and vec c are unit vectors such that vec a+ vec b...

    Text Solution

    |

  13. If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit ve...

    Text Solution

    |

  14. Prove that (i) [hat(i)hat(j)hat(k)]=[hat(j)hat(k)hat(i)]=[hat(k)hat(...

    Text Solution

    |

  15. Find the volume of the parallelepiped whose coterminous edges are r...

    Text Solution

    |

  16. If the volume of a parallelepied having vec(a)=(5hat(i)-4hat(j)+hat(k)...

    Text Solution

    |

  17. It is given that the vectorsvec(a)=(2hat(i)-2hat(k)), vec(b)=hat(i)+(l...

    Text Solution

    |

  18. Which of the following is meaningless?

    Text Solution

    |

  19. Prove that vecA.(vecAxxvecB)=0

    Text Solution

    |

  20. For any three vectors vec a,vec b,vec c, (vec a-vec b)* (vec b-vec c)x...

    Text Solution

    |