Home
Class 11
MATHS
Simplify each of the following and expre...

Simplify each of the following and express it in the form a + ib :
`{:((i),2(3+4i)+i(5-6i),(ii),(3+sqrt(-16))-(4-sqrt(-9))),((iii),(-5+6i)-(2+i),(iv),(8-4i)-(-3+5i)),((v),(1-i)^(2)(1+i)-(3-4i)^(2),(vi),(5+sqrt(-3))(5-sqrt(-3))),((vii),(3+4i)(2-3i),(viii),(-2+sqrt(-3))(-3+2 sqrt(-3))):}`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify each of the given expressions step by step and express them in the form \( a + ib \). ### (i) \( 2(3 + 4i) + i(5 - 6i) \) 1. Distribute the terms: \[ 2(3 + 4i) = 6 + 8i \] \[ i(5 - 6i) = 5i - 6i^2 = 5i + 6 \quad (\text{since } i^2 = -1) \] 2. Combine the results: \[ 6 + 8i + 5i + 6 = 12 + 13i \] **Final Answer: \( 12 + 13i \)** ### (ii) \( (3 + \sqrt{-16}) - (4 - \sqrt{-9}) \) 1. Rewrite the square roots: \[ \sqrt{-16} = 4i \quad \text{and} \quad \sqrt{-9} = 3i \] 2. Substitute and simplify: \[ (3 + 4i) - (4 - 3i) = 3 + 4i - 4 + 3i = (3 - 4) + (4i + 3i) = -1 + 7i \] **Final Answer: \( -1 + 7i \)** ### (iii) \( (-5 + 6i) - (2 + i) \) 1. Distribute the negative sign: \[ -5 + 6i - 2 - i = (-5 - 2) + (6i - i) = -7 + 5i \] **Final Answer: \( -7 + 5i \)** ### (iv) \( (8 - 4i) - (-3 + 5i) \) 1. Distribute the negative sign: \[ 8 - 4i + 3 - 5i = (8 + 3) + (-4i - 5i) = 11 - 9i \] **Final Answer: \( 11 - 9i \)** ### (v) \( (1 - i)^2(1 + i) - (3 - 4i)^2 \) 1. Calculate \( (1 - i)^2 \): \[ (1 - i)^2 = 1 - 2i + i^2 = 1 - 2i - 1 = -2i \] 2. Calculate \( -2i(1 + i) \): \[ -2i(1 + i) = -2i - 2i^2 = -2i + 2 = 2 - 2i \] 3. Calculate \( (3 - 4i)^2 \): \[ (3 - 4i)^2 = 9 - 24i + 16i^2 = 9 - 24i - 16 = -7 - 24i \] 4. Combine: \[ (2 - 2i) - (-7 - 24i) = 2 - 2i + 7 + 24i = (2 + 7) + (-2i + 24i) = 9 + 22i \] **Final Answer: \( 9 + 22i \)** ### (vi) \( (5 + \sqrt{-3})(5 - \sqrt{-3}) \) 1. Rewrite the square roots: \[ \sqrt{-3} = i\sqrt{3} \] 2. Use the difference of squares: \[ (5 + i\sqrt{3})(5 - i\sqrt{3}) = 5^2 - (i\sqrt{3})^2 = 25 - (-3) = 25 + 3 = 28 \] **Final Answer: \( 28 + 0i \) (or simply \( 28 \))** ### (vii) \( (3 + 4i)(2 - 3i) \) 1. Distribute: \[ 3 \cdot 2 + 3 \cdot (-3i) + 4i \cdot 2 + 4i \cdot (-3i) = 6 - 9i + 8i - 12i^2 \] 2. Combine: \[ 6 - 9i + 8i + 12 = (6 + 12) + (-9i + 8i) = 18 - i \] **Final Answer: \( 18 - i \)** ### (viii) \( (-2 + \sqrt{-3})(-3 + 2\sqrt{-3}) \) 1. Rewrite the square roots: \[ \sqrt{-3} = i\sqrt{3} \] 2. Substitute and distribute: \[ (-2 + i\sqrt{3})(-3 + 2i\sqrt{3}) = (-2)(-3) + (-2)(2i\sqrt{3}) + (i\sqrt{3})(-3) + (i\sqrt{3})(2i\sqrt{3}) \] \[ = 6 - 4i\sqrt{3} - 3i\sqrt{3} + 2(-3) = 6 - 4i\sqrt{3} - 3i\sqrt{3} - 6 \] 3. Combine: \[ 0 - (4i\sqrt{3} + 3i\sqrt{3}) = -7i\sqrt{3} \] **Final Answer: \( 0 - 7i\sqrt{3} \) (or simply \( -7i\sqrt{3} \))**
Promotional Banner

Similar Questions

Explore conceptually related problems

Express each of the following in the form (a + ib) : {:((i),(3+sqrt(-5))(3-sqrt(-5)),(ii),(-2+sqrt(-3))(-3 + 2 sqrt(-3))),((iii),(-2+3i)^(2),(iv),(sqrt(5)-7i)^(2)):}

Express the following expression in the form of a+ib((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express the following expression in the form of a+ib qquad ((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express each of the following in the form (a + ib): (i)" "(i)/((1+i))" "(ii)" "(-1+sqrt(3)i)^(-1)" "(iii)" "(5+sqrt(2)i)/(1=sqrt(2)i)

((3+i sqrt(3))(3-i sqrt(3)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Simplify and express each of the following in the form (a + ib) : (i)" "((5)/(-3+2i)+(2)/(1-i))((4-5i)/(3+2i))" "(ii)" "((1)/(1-4i)-(2)/(1+i))((1-i)/(5+3i))

Express in the form a+ib : (sqrt(3)-i sqrt(2))/(2sqrt(3)-i sqrt(3))

Simplify each of the following expressions: (i) (3+sqrt(3))(2+sqrt(2)) (ii) (3+sqrt(3))(3-sqrt(3)) (iii) (sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))