Home
Class 11
MATHS
Evaluate: sqrt(5+12i)...

Evaluate: `sqrt(5+12i)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sqrt{5 + 12i} \), we will follow a systematic approach using the properties of complex numbers. ### Step 1: Let \( z = \sqrt{5 + 12i} \) We can express \( z \) in terms of its real and imaginary parts: \[ z = x + yi \] where \( x \) is the real part and \( y \) is the imaginary part. ### Step 2: Square both sides Squaring both sides gives us: \[ z^2 = 5 + 12i \] Substituting \( z = x + yi \) into the equation, we have: \[ (x + yi)^2 = 5 + 12i \] Expanding the left side: \[ x^2 + 2xyi - y^2 = 5 + 12i \] ### Step 3: Separate real and imaginary parts From the equation \( x^2 - y^2 + 2xyi = 5 + 12i \), we can equate the real and imaginary parts: 1. Real part: \( x^2 - y^2 = 5 \) 2. Imaginary part: \( 2xy = 12 \) ### Step 4: Solve the equations From the imaginary part equation \( 2xy = 12 \), we can simplify it to: \[ xy = 6 \quad \text{(1)} \] Now we have a system of equations: 1. \( x^2 - y^2 = 5 \quad \text{(2)} \) 2. \( xy = 6 \quad \text{(1)} \) ### Step 5: Express \( y \) in terms of \( x \) From equation (1), we can express \( y \) as: \[ y = \frac{6}{x} \] ### Step 6: Substitute \( y \) into equation (2) Substituting \( y \) into equation (2): \[ x^2 - \left(\frac{6}{x}\right)^2 = 5 \] This simplifies to: \[ x^2 - \frac{36}{x^2} = 5 \] Multiplying through by \( x^2 \) to eliminate the fraction: \[ x^4 - 5x^2 - 36 = 0 \] ### Step 7: Let \( u = x^2 \) Let \( u = x^2 \), then we have a quadratic equation: \[ u^2 - 5u - 36 = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ u = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-36)}}{2 \cdot 1} \] \[ u = \frac{5 \pm \sqrt{25 + 144}}{2} \] \[ u = \frac{5 \pm \sqrt{169}}{2} \] \[ u = \frac{5 \pm 13}{2} \] Calculating the two possible values: 1. \( u = \frac{18}{2} = 9 \) (so \( x^2 = 9 \) and \( x = 3 \)) 2. \( u = \frac{-8}{2} = -4 \) (not valid since \( u = x^2 \) cannot be negative) ### Step 9: Find \( y \) Now substituting \( x = 3 \) back into equation (1): \[ y = \frac{6}{3} = 2 \] ### Step 10: Write the final result Thus, we have: \[ z = 3 + 2i \] Therefore, the value of \( \sqrt{5 + 12i} \) is: \[ \sqrt{5 + 12i} = 3 + 2i \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : sqrt(5) + sqrt(5) + sqrt(5) + sqrt (5)

Evaluate : sqrt( 5 + sqrt( 5 + sqrt ( 5 + sqrt( 5 ----- oo )))

Evaluate : sqrt( 5 + sqrt( 5 + sqrt ( 5 + sqrt( 5 ----- oo )))

sqrt(5+12 iota)

Evaluate : sqrt(5)/ (sqrt(7) - sqrt(5)

Evaluate : ( sqrt(5) + sqrt(3) )/ ( sqrt(5) - sqrt(3))

Evaluate : ( sqrt(5) + sqrt(2) ) times ( sqrt(5) + sqrt(2) )

Evaluate (sqrt(2)+sqrt(5))(5-sqrt(5))