Home
Class 11
MATHS
Find the sum of the GP: (i) 1+3+9+27+....

Find the sum of the GP:
(i) `1+3+9+27+...` to 7 terms
(ii) `1+sqrt(3)+3+3sqrt(3)+...` to 10 terms
(iii) `0.15+0.015+0.0015+...` to 6 terms
(iv) `1-1/2+1/4-1/8+...` to 9 terms
(v) `sqrt(2)+1/sqrt(2)+1/(2sqrt(2))+...` to 8 terms
(vi) `2/9-1/3+1/2-3/4+...` to 6 terms

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem of finding the sum of various geometric progressions (GP), we will use the formula for the sum of the first \( n \) terms of a GP, which is: \[ S_n = A \frac{1 - R^n}{1 - R} \] where: - \( S_n \) is the sum of the first \( n \) terms, - \( A \) is the first term, - \( R \) is the common ratio, - \( n \) is the number of terms. Let's solve each part step by step. ### Part (i): Find the sum of the GP \( 1 + 3 + 9 + 27 + \ldots \) to 7 terms. 1. Identify \( A \) and \( R \): - \( A = 1 \) - \( R = 3 \) (since \( 3/1 = 3 \)) 2. Use the formula: \[ S_7 = 1 \frac{1 - 3^7}{1 - 3} \] 3. Calculate \( 3^7 \): \[ 3^7 = 2187 \] 4. Substitute back into the formula: \[ S_7 = 1 \frac{1 - 2187}{1 - 3} = 1 \frac{-2186}{-2} = 1093 \] **Sum for Part (i): \( S_7 = 1093 \)** ### Part (ii): Find the sum of the GP \( 1 + \sqrt{3} + 3 + 3\sqrt{3} + \ldots \) to 10 terms. 1. Identify \( A \) and \( R \): - \( A = 1 \) - \( R = \sqrt{3} \) 2. Use the formula: \[ S_{10} = 1 \frac{1 - (\sqrt{3})^{10}}{1 - \sqrt{3}} \] 3. Calculate \( (\sqrt{3})^{10} = 3^5 = 243 \): \[ S_{10} = 1 \frac{1 - 243}{1 - \sqrt{3}} = \frac{-242}{1 - \sqrt{3}} \] 4. Rationalize the denominator: \[ S_{10} = \frac{-242(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})} = \frac{-242(1 + \sqrt{3})}{3 - 1} = \frac{-121(1 + \sqrt{3})}{1} \] **Sum for Part (ii): \( S_{10} = -121(1 + \sqrt{3}) \)** ### Part (iii): Find the sum of the GP \( 0.15 + 0.015 + 0.0015 + \ldots \) to 6 terms. 1. Identify \( A \) and \( R \): - \( A = 0.15 \) - \( R = 0.1 \) 2. Use the formula: \[ S_6 = 0.15 \frac{1 - (0.1)^6}{1 - 0.1} \] 3. Calculate \( (0.1)^6 = 0.000001 \): \[ S_6 = 0.15 \frac{1 - 0.000001}{0.9} = 0.15 \frac{0.999999}{0.9} = 0.15 \times \frac{999999}{900000} = 0.1665 \] **Sum for Part (iii): \( S_6 = 0.1665 \)** ### Part (iv): Find the sum of the GP \( 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots \) to 9 terms. 1. Identify \( A \) and \( R \): - \( A = 1 \) - \( R = -\frac{1}{2} \) 2. Use the formula: \[ S_9 = 1 \frac{1 - (-\frac{1}{2})^9}{1 - (-\frac{1}{2})} \] 3. Calculate \( (-\frac{1}{2})^9 = -\frac{1}{512} \): \[ S_9 = 1 \frac{1 + \frac{1}{512}}{1 + \frac{1}{2}} = \frac{1 + \frac{1}{512}}{\frac{3}{2}} = \frac{2 + \frac{1}{256}}{3} = \frac{512 + 1}{768} = \frac{513}{768} \] **Sum for Part (iv): \( S_9 = \frac{513}{768} \)** ### Part (v): Find the sum of the GP \( \sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + \ldots \) to 8 terms. 1. Identify \( A \) and \( R \): - \( A = \sqrt{2} \) - \( R = \frac{1}{\sqrt{2}} \) 2. Use the formula: \[ S_8 = \sqrt{2} \frac{1 - (\frac{1}{\sqrt{2}})^8}{1 - \frac{1}{\sqrt{2}}} \] 3. Calculate \( (\frac{1}{\sqrt{2}})^8 = \frac{1}{16} \): \[ S_8 = \sqrt{2} \frac{1 - \frac{1}{16}}{1 - \frac{1}{\sqrt{2}}} = \sqrt{2} \frac{\frac{15}{16}}{1 - \frac{1}{\sqrt{2}}} \] 4. Simplify: \[ S_8 = \sqrt{2} \frac{15}{16} \cdot \frac{\sqrt{2}}{\sqrt{2} - 1} = \frac{15 \cdot 2}{16(\sqrt{2} - 1)} = \frac{30}{16(\sqrt{2} - 1)} \] **Sum for Part (v): \( S_8 = \frac{30}{16(\sqrt{2} - 1)} \)** ### Part (vi): Find the sum of the GP \( \frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + \ldots \) to 6 terms. 1. Identify \( A \) and \( R \): - \( A = \frac{2}{9} \) - \( R = -\frac{3}{2} \) 2. Use the formula: \[ S_6 = \frac{2}{9} \frac{1 - (-\frac{3}{2})^6}{1 - (-\frac{3}{2})} \] 3. Calculate \( (-\frac{3}{2})^6 = \frac{729}{64} \): \[ S_6 = \frac{2}{9} \frac{1 - \frac{729}{64}}{1 + \frac{3}{2}} = \frac{2}{9} \frac{\frac{64 - 729}{64}}{\frac{5}{2}} = \frac{2}{9} \cdot \frac{-665/64}{5/2} = \frac{-133}{144} \] **Sum for Part (vi): \( S_6 = -\frac{133}{144} \)** ### Summary of Results: - (i) \( S_7 = 1093 \) - (ii) \( S_{10} = -121(1 + \sqrt{3}) \) - (iii) \( S_6 = 0.1665 \) - (iv) \( S_9 = \frac{513}{768} \) - (v) \( S_8 = \frac{30}{16(\sqrt{2} - 1)} \) - (vi) \( S_6 = -\frac{133}{144} \)

To solve the given problem of finding the sum of various geometric progressions (GP), we will use the formula for the sum of the first \( n \) terms of a GP, which is: \[ S_n = A \frac{1 - R^n}{1 - R} \] where: - \( S_n \) is the sum of the first \( n \) terms, ...
Promotional Banner

Topper's Solved these Questions

  • GEOMETRICAL PROGRESSION

    RS AGGARWAL|Exercise EXERCISE 12D|6 Videos
  • GEOMETRICAL PROGRESSION

    RS AGGARWAL|Exercise EXERCISE 12E|20 Videos
  • GEOMETRICAL PROGRESSION

    RS AGGARWAL|Exercise EXERCISE 12B|9 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise EXERCISE 3F VERY-SHORT-ANSWER QUESTIONS|21 Videos
  • GRAPHS OF TRIGONOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise EXERCISE 19|6 Videos

Similar Questions

Explore conceptually related problems

sqrt(2)+(1)/(sqrt(2))+(1)/(2sqrt(2))+... to 8 terms

Find: the 10 th term of the G.P.sqrt(2),(1)/(sqrt(2)),(1)/(2sqrt(2))

Find the 8th term of the G.P. sqrt(3),(1)/(sqrt(3)),(1)/(3sqrt(3)), ....

Find: n th term of the G.P.sqrt(3),(1)/(sqrt(3)),(1)/(3sqrt(3))

Find the sum of the GP(i)sqrt(7)+sqrt(21)+3sqrt(7)+............ to n terms (ii) 1-(1)/(3)+(1)/(3^(2))-(1)/(3^(3))...... to terms

Find the sum of the GP : (i) sqrt(7)+sqrt(21)+3sqrt(7)+... to n terms (ii) 1-1/3+1/3^(2)-1/3^(3)+... to n terms (iii) 1-a+a^(2)-a^(3)+... to n terms (a ne 1) (iv) x^(3)+x^(5)+x^(7)+... to terms (v) x(x+y)+x^(2)(x^(2)+y^(2))+x^(3) (x^(3)+y^(3))+... to n terms

Which term of the GP sqrt(3), 1/sqrt(3), 1/(3sqrt(3)), 1/(9sqrt(3)) , ... Is 1/(729sqrt(3)) ?

sum-2,2(1)/(2),-3(1)/(8),...... to 6 terms