Home
Class 11
MATHS
Find the sum of the series : (i) 8+88+...

Find the sum of the series :
(i) `8+88+888+` ... to n terms
(ii) `3+33+333+` ... to n terms
(iii) `0.7+0.77+0.777+`... to n terms

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series for each part, we will break down the problem step by step. ### Part (i): Sum of the series \(8 + 88 + 888 + \ldots\) to \(n\) terms 1. **Factor out 8**: \[ S_n = 8 + 88 + 888 + \ldots = 8(1 + 11 + 111 + \ldots) \] 2. **Rewrite the series**: \[ S_n = 8(1 + 11 + 111 + \ldots) = 8 \left( \frac{9}{9} \right)(1 + 11 + 111 + \ldots) = \frac{8}{9}(9 + 99 + 999 + \ldots) \] 3. **Express numbers in terms of powers of 10**: \[ 9 = 10 - 1, \quad 99 = 100 - 1, \quad 999 = 1000 - 1 \] Thus, \[ S_n = \frac{8}{9} \left( (10 + 100 + 1000 + \ldots) - n \right) \] 4. **Identify the geometric series**: The series \(10 + 100 + 1000 + \ldots\) is a geometric series with first term \(10\) and common ratio \(10\): \[ S = 10 \frac{10^n - 1}{10 - 1} = \frac{10}{9}(10^n - 1) \] 5. **Combine results**: \[ S_n = \frac{8}{9} \left( \frac{10}{9}(10^n - 1) - n \right) \] \[ S_n = \frac{80}{81}(10^n - 1) - \frac{8n}{9} \] ### Part (ii): Sum of the series \(3 + 33 + 333 + \ldots\) to \(n\) terms 1. **Factor out 3**: \[ S_n = 3 + 33 + 333 + \ldots = 3(1 + 11 + 111 + \ldots) \] 2. **Rewrite the series**: \[ S_n = 3 \left( \frac{9}{9} \right)(1 + 11 + 111 + \ldots) = \frac{1}{3}(9 + 99 + 999 + \ldots) \] 3. **Express numbers in terms of powers of 10**: \[ S_n = \frac{1}{3} \left( (10 + 100 + 1000 + \ldots) - n \right) \] 4. **Identify the geometric series**: \[ S = 10 \frac{10^n - 1}{10 - 1} = \frac{10}{9}(10^n - 1) \] 5. **Combine results**: \[ S_n = \frac{1}{3} \left( \frac{10}{9}(10^n - 1) - n \right) \] \[ S_n = \frac{10}{27}(10^n - 1) - \frac{n}{3} \] ### Part (iii): Sum of the series \(0.7 + 0.77 + 0.777 + \ldots\) to \(n\) terms 1. **Factor out 0.7**: \[ S_n = 0.7 + 0.77 + 0.777 + \ldots = 0.7(1 + 1.1 + 1.11 + \ldots) \] 2. **Rewrite the series**: \[ S_n = 0.7 \left( \frac{9}{9} \right)(1 + 1.1 + 1.11 + \ldots) = \frac{7}{9}(0.9 + 0.99 + 0.999 + \ldots) \] 3. **Express numbers in terms of powers of 10**: \[ S_n = \frac{7}{9} \left( (1 - 0.1) + (1 - 0.01) + (1 - 0.001) + \ldots \right) \] 4. **Separate the terms**: \[ S_n = \frac{7}{9} \left( n - 0.1(1 + 0.1 + 0.01 + \ldots) \right) \] 5. **Identify the geometric series**: \[ S = 0.1 \frac{1 - (0.1)^n}{1 - 0.1} = \frac{1}{0.9}(1 - 0.1^n) \] 6. **Combine results**: \[ S_n = \frac{7}{9} n - \frac{7}{81}(1 - 0.1^n) \] ### Summary of Results: 1. For \(8 + 88 + 888 + \ldots\) to \(n\) terms: \[ S_n = \frac{80}{81}(10^n - 1) - \frac{8n}{9} \] 2. For \(3 + 33 + 333 + \ldots\) to \(n\) terms: \[ S_n = \frac{10}{27}(10^n - 1) - \frac{n}{3} \] 3. For \(0.7 + 0.77 + 0.777 + \ldots\) to \(n\) terms: \[ S_n = \frac{7}{9} n - \frac{7}{81}(1 - 0.1^n) \]

To find the sum of the series for each part, we will break down the problem step by step. ### Part (i): Sum of the series \(8 + 88 + 888 + \ldots\) to \(n\) terms 1. **Factor out 8**: \[ S_n = 8 + 88 + 888 + \ldots = 8(1 + 11 + 111 + \ldots) \] ...
Promotional Banner

Topper's Solved these Questions

  • GEOMETRICAL PROGRESSION

    RS AGGARWAL|Exercise EXERCISE 12D|6 Videos
  • GEOMETRICAL PROGRESSION

    RS AGGARWAL|Exercise EXERCISE 12E|20 Videos
  • GEOMETRICAL PROGRESSION

    RS AGGARWAL|Exercise EXERCISE 12B|9 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise EXERCISE 3F VERY-SHORT-ANSWER QUESTIONS|21 Videos
  • GRAPHS OF TRIGONOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise EXERCISE 19|6 Videos

Similar Questions

Explore conceptually related problems

Find the sum of n terms of 0.8 + 0.88 + 0.888 + …

Find the sum of n terms of the series " 7 + 77 + 777 + …

Find the sum of the sequence 7,77,777,7777... to n terms.

Find the sum of n terms of series : 3 + 5 + 9 + 15 + 23 + ………… n terms

Find the sum of the series 3 + 7 + 13 + 21 + 31 + … to n terms . Find the sun when n=20

Find the sum of the following series: 0.7+0.77+0.777+rarr n terms