Home
Class 11
MATHS
Find the equation of the line for which ...

Find the equation of the line for which
`(i)p=3 and alpha=45^(@)` (ii)`p=5 and alpha=135^(@)`
(iii)`p=8 alpha=150^(@)` (iv) `p=3 and alpha=225^(@)`
(v)`p=2 and alpha=300^(@)` (vi)`p=4 and alpha=180^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equations of the lines given the parameters \( p \) and \( \alpha \), we will use the formula: \[ x \cos \alpha + y \sin \alpha = p \] We will calculate the equations step by step for each case. ### (i) For \( p = 3 \) and \( \alpha = 45^\circ \) 1. **Calculate \( \cos 45^\circ \) and \( \sin 45^\circ \)**: \[ \cos 45^\circ = \frac{1}{\sqrt{2}}, \quad \sin 45^\circ = \frac{1}{\sqrt{2}} \] 2. **Substitute into the equation**: \[ x \cdot \frac{1}{\sqrt{2}} + y \cdot \frac{1}{\sqrt{2}} = 3 \] 3. **Multiply through by \( \sqrt{2} \)**: \[ x + y = 3\sqrt{2} \] 4. **Rearrange to standard form**: \[ x + y - 3\sqrt{2} = 0 \] ### (ii) For \( p = 5 \) and \( \alpha = 135^\circ \) 1. **Calculate \( \cos 135^\circ \) and \( \sin 135^\circ \)**: \[ \cos 135^\circ = -\frac{1}{\sqrt{2}}, \quad \sin 135^\circ = \frac{1}{\sqrt{2}} \] 2. **Substitute into the equation**: \[ x \cdot \left(-\frac{1}{\sqrt{2}}\right) + y \cdot \frac{1}{\sqrt{2}} = 5 \] 3. **Multiply through by \( \sqrt{2} \)**: \[ -x + y = 5\sqrt{2} \] 4. **Rearrange to standard form**: \[ -x + y - 5\sqrt{2} = 0 \quad \text{or} \quad x - y + 5\sqrt{2} = 0 \] ### (iii) For \( p = 8 \) and \( \alpha = 150^\circ \) 1. **Calculate \( \cos 150^\circ \) and \( \sin 150^\circ \)**: \[ \cos 150^\circ = -\frac{\sqrt{3}}{2}, \quad \sin 150^\circ = \frac{1}{2} \] 2. **Substitute into the equation**: \[ x \cdot \left(-\frac{\sqrt{3}}{2}\right) + y \cdot \frac{1}{2} = 8 \] 3. **Multiply through by 2**: \[ -\sqrt{3}x + y = 16 \] 4. **Rearrange to standard form**: \[ -\sqrt{3}x + y - 16 = 0 \] ### (iv) For \( p = 3 \) and \( \alpha = 225^\circ \) 1. **Calculate \( \cos 225^\circ \) and \( \sin 225^\circ \)**: \[ \cos 225^\circ = -\frac{1}{\sqrt{2}}, \quad \sin 225^\circ = -\frac{1}{\sqrt{2}} \] 2. **Substitute into the equation**: \[ x \cdot \left(-\frac{1}{\sqrt{2}}\right) + y \cdot \left(-\frac{1}{\sqrt{2}}\right) = 3 \] 3. **Multiply through by \( \sqrt{2} \)**: \[ -x - y = 3\sqrt{2} \] 4. **Rearrange to standard form**: \[ x + y + 3\sqrt{2} = 0 \] ### (v) For \( p = 2 \) and \( \alpha = 300^\circ \) 1. **Calculate \( \cos 300^\circ \) and \( \sin 300^\circ \)**: \[ \cos 300^\circ = \frac{1}{2}, \quad \sin 300^\circ = -\frac{\sqrt{3}}{2} \] 2. **Substitute into the equation**: \[ x \cdot \frac{1}{2} + y \cdot \left(-\frac{\sqrt{3}}{2}\right) = 2 \] 3. **Multiply through by 2**: \[ x - \sqrt{3}y = 4 \] 4. **Rearrange to standard form**: \[ x - \sqrt{3}y - 4 = 0 \] ### (vi) For \( p = 4 \) and \( \alpha = 180^\circ \) 1. **Calculate \( \cos 180^\circ \) and \( \sin 180^\circ \)**: \[ \cos 180^\circ = -1, \quad \sin 180^\circ = 0 \] 2. **Substitute into the equation**: \[ x \cdot (-1) + y \cdot 0 = 4 \] 3. **Simplify**: \[ -x = 4 \] 4. **Rearrange to standard form**: \[ x + 0y - 4 = 0 \quad \text{or simply} \quad x - 4 = 0 \] ### Summary of Equations 1. \( x + y - 3\sqrt{2} = 0 \) 2. \( x - y + 5\sqrt{2} = 0 \) 3. \( -\sqrt{3}x + y - 16 = 0 \) 4. \( x + y + 3\sqrt{2} = 0 \) 5. \( x - \sqrt{3}y - 4 = 0 \) 6. \( x - 4 = 0 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of a line for which: p=8,alpha=225^(@)

Find the equation of a line for which: p=8,alpha=300^(0)

Find the equation of a line for which: p=5,alpha=60^(0)

Find the equation of the line through the points (p sec alpha,0) and (0,p cos ec alpha)

Obtain the perpendicular form of the equation of st.lines from the given values of p and alpha (i) p=5 , alpha=30^(@) (ii) p=1 , alpha=90^(@) (iii)p=4 , alpha=15^(@)

Find the condition that the line x cos alpha+y sin alpha=p touches the parabola y^(2)=4ax

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .

Show that the equation of the straight line x cos alpha+y sin alpha=p can be expressed in the following form (x-p cos alpha)/(-sin alpha)=(y-psi n alpha)/(cos alpha)=r

Reduce the equation y+4=0 to the normal form x cos alhpha+y sin alpha=p and hence find the values of alpha and p .

Find the equation of the line where the perpendicular distance p of the line from origin and the angle alpha made by the perpendicular with x-axis are given as: p=3, alpha = 45^0