Home
Class 8
MATHS
Subtract 3pq(p-q) from 2pq(p+q)...

Subtract `3pq(p-q)` from `2pq(p+q)`

A

`-3p^2q+5pq^2`

B

`-p^2q+5pq^2`

C

`-p^2q+5p^2q^2`

D

`p^2q-5pq^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of subtracting \(3pq(p-q)\) from \(2pq(p+q)\), we will follow these steps: ### Step 1: Write the expression for subtraction We need to subtract \(3pq(p-q)\) from \(2pq(p+q)\). This can be expressed as: \[ 2pq(p+q) - 3pq(p-q) \] ### Step 2: Expand both expressions Now we will expand both expressions using the distributive property. 1. **Expanding \(2pq(p+q)\)**: \[ 2pq(p+q) = 2pq \cdot p + 2pq \cdot q = 2p^2q + 2pq^2 \] 2. **Expanding \(3pq(p-q)\)**: \[ 3pq(p-q) = 3pq \cdot p - 3pq \cdot q = 3p^2q - 3pq^2 \] ### Step 3: Substitute the expanded forms back into the expression Now we substitute the expanded forms back into the expression: \[ (2p^2q + 2pq^2) - (3p^2q - 3pq^2) \] ### Step 4: Distribute the negative sign Distributing the negative sign across the second expression: \[ 2p^2q + 2pq^2 - 3p^2q + 3pq^2 \] ### Step 5: Combine like terms Now we combine the like terms: 1. For \(p^2q\): \[ 2p^2q - 3p^2q = -p^2q \] 2. For \(pq^2\): \[ 2pq^2 + 3pq^2 = 5pq^2 \] ### Step 6: Write the final result Combining the results from the previous step, we have: \[ -p^2q + 5pq^2 \] Thus, the final answer is: \[ -p^2q + 5pq^2 \]

To solve the problem of subtracting \(3pq(p-q)\) from \(2pq(p+q)\), we will follow these steps: ### Step 1: Write the expression for subtraction We need to subtract \(3pq(p-q)\) from \(2pq(p+q)\). This can be expressed as: \[ 2pq(p+q) - 3pq(p-q) \] ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT|Exercise EXERCISE 9.1|4 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT|Exercise EXERCISE 9.5|8 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT|Exercise EXERCISE 9.3|5 Videos
  • COMPARING QUANTITIES

    NCERT|Exercise EXERCISE 8.1|6 Videos

Similar Questions

Explore conceptually related problems

Subtract 3pq(p-q)0m2pq(p+q)

Subtract : - 3p ^(2) + 3pq +3p x from 3p (- p -a - r)

Subtract: 4pq - 5a^(2) - 3p^(2) "from" 5p^(2) + 3q^(2) - pq

(a) Subtract 4a-7ab+3b+12 from 12a-9ab+5b(r) Subtract 3xy+5yz-7zx from 5xy-2yx+10xyz( ij ) Subtract 4p^(2)q-3pq+5pq^(2)-8p+7q-10 from 18-3p-11q+5pq-2pq^(2)+5p^(2)q

Verify that (p-q) ( p ^(2) + pq + q ^(2)) = p ^(3) - q ^(3)

If the equation x^(2)+px+q=0 and x^(2)+p'x+q'=0 have a common root show that it must be equal to (pq'-p'q)/(q-q') or (q-q')/(p'-p)

pq ^(2) + q (p -1) -1= ?