Home
Class 12
MATHS
Prove that: veca.{(vecb+vecc)xx(veca+2ve...

Prove that: `veca.{(vecb+vecc)xx(veca+2vecb+3vecc)}=[vecavecbvecc].`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    RS AGGARWAL|Exercise SECTION D|6 Videos
  • LINEAR PROGRAMMING

    RS AGGARWAL|Exercise SECTION B|8 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb, vecb+vecc ,vecc+veca]=2[veca vecb vecc]

Prove that [veca+vecb vecb+vecc vecc+veca]=2[vecavecbvecc]

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

Prove that veca\'.(vecb+vecc)+vecb\'.(vecc+veca)+vecc\'.(veca+vecb)=0

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then gamma is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)