Home
Class 12
MATHS
The numerical value of "tan"(2tan^(-1)(1...

The numerical value of `"tan"(2tan^(-1)(1/5)-pi/4` is equal to____

Text Solution

Verified by Experts

The correct Answer is:
`(- (7)/(17))`

` tan [ 2 tan ^(-2) ((1)/(5)) - (pi)/(4)] = tan [ tan ^(-1) (( 2* (1)/(5))/( 1 - ( 1)/( 25))) - (pi)/(4)]`
`" "= tan [ tan ^(-1) ((5)/( 12)) - (pi)/( 4)] `
` " " = ( tan [ tan ^(-1) ((5)/( 12)) ] - tan (( pi)/( 4)))/( 1 + tan [ tan ^(-1) ((5)/( 12)) ] tan ""(pi)/( 4))`
` " " = ((5)/( 12) - 1 )/( 1 + ( 5)/( 12) * 1) = - ( 7)/( 17)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan(2tan^(-1)(1/5))

tan[2.tan^(-1)(1/5)- pi/4]=

The value of tan(2tan^(-1)2-(pi)/(4)) is

The value of tan(2tan^(-1)""(1)/(5)-(pi)/(4)) is

The value of tan (2 "tan"^(-1)(1)/(5)-(pi)/(4)) is

The value of tan^(-1)2+tan^(-1)3+tan^(-1)4is equal

If A+B=pi/4 , find the numerical value of (1+tan A)(1+tan B) is equal to