Home
Class 12
MATHS
Suppose that vec p, vec q and vec r are ...

Suppose that `vec p, vec q and vec r` are three non-coplanar vectors in `R^3`. Let the components of a vector `vec s` along `vec p, vec q and vec r` be 4, 3 and 5, respectively. If the components of this vector `vec s` along `(-vec p+vec q +vec r), (vec p-vec q+vec r) and (-vec p-vec q+vec r)` are x, y and z, respectively, then the value of `2vec x+vec y+vec z` is

Text Solution

Verified by Experts

The correct Answer is:
`(9)`

Here `s= 4P + 3q +5r`
and `s= (-P+q+r )x+ (p-q+r) y+(-P-q+r) z ……(1)`
` :. 4p+3q+5r =p (-x+y-z) +q(x-y+z)+ r(x+y+z)`
On comparing both sides we get
`-x+y -z= 4, x -y =3 " and " x+y+z=6`
On solving above equations we get
`x= 4 , y= (9)/(2), =(-7)/(2)`
`:. 2x +y+ z=8 + (9)/(2)- (7)/(2) = 9`
Promotional Banner

Similar Questions

Explore conceptually related problems

Two vectors vec P and vec Q

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

If vec p + vec q + vec r = xvec s and vec q + vec r + vec s = yvec p and are vec p, vec q, vec r non coplaner vectors then | vec p + vec q + vec r + vec r + vec s | =

If the vectors 3vec p+vec q;5p-3vec q and 2vec p+vec q;4vec p-2vec q are pairs of mutually perpendicular vectors, then find the angle between vectors vec p and vec q

vec a,vec b,vec c are the three coplanar vectors and if vec r*vec a=vec r*vec b=vec r*vec c=0 then prove that vec r is a zero vector

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

Find the angle between the vectors vec a = 2 vec p + 4 vec q and vec b = vec p- vec q where vec p and vec q are unit vectors forming an angle of 120^@ .