Home
Class 12
MATHS
Let a=3hat(i) +2hat(j) +2hat(k) " and "...

Let `a=3hat(i) +2hat(j) +2hat(k) " and " b=hat(i) +2hat(j) -2hat(k)` be two vectors. If a vectors perpendicular to both the vectors a+b and a-b has the megnitude 12 ,then one such vectors is

A

`4(2hat(i)+2hat(j)+hat(k))`

B

`4(2hat(i)-2hat(j)-hat(k))`

C

`4(2hat(i)+2hat(j)-hat(k))`

D

`4(-2hat(i)-2hat(j)+hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector that is perpendicular to both \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \) with a magnitude of 12. Let's go through the steps systematically. ### Step 1: Define the vectors Given: \[ \mathbf{a} = 3\hat{i} + 2\hat{j} + 2\hat{k} \] \[ \mathbf{b} = \hat{i} + 2\hat{j} - 2\hat{k} \] ### Step 2: Calculate \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \) First, we calculate \( \mathbf{a} + \mathbf{b} \): \[ \mathbf{a} + \mathbf{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) + (\hat{i} + 2\hat{j} - 2\hat{k}) \] \[ = (3 + 1)\hat{i} + (2 + 2)\hat{j} + (2 - 2)\hat{k} \] \[ = 4\hat{i} + 4\hat{j} + 0\hat{k} = 4\hat{i} + 4\hat{j} \] Now, calculate \( \mathbf{a} - \mathbf{b} \): \[ \mathbf{a} - \mathbf{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) - (\hat{i} + 2\hat{j} - 2\hat{k}) \] \[ = (3 - 1)\hat{i} + (2 - 2)\hat{j} + (2 + 2)\hat{k} \] \[ = 2\hat{i} + 0\hat{j} + 4\hat{k} = 2\hat{i} + 4\hat{k} \] ### Step 3: Find the cross product \( \mathbf{c} = (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) \) We need to calculate the cross product: \[ \mathbf{c} = (4\hat{i} + 4\hat{j}) \times (2\hat{i} + 4\hat{k}) \] Using the determinant method: \[ \mathbf{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 4 & 0 \\ 0 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & 0 \\ 2 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 4 \\ 2 & 0 \end{vmatrix} \] \[ = \hat{i} (4 \cdot 4 - 0 \cdot 0) - \hat{j} (4 \cdot 4 - 0 \cdot 2) + \hat{k} (4 \cdot 0 - 4 \cdot 2) \] \[ = 16\hat{i} - 16\hat{j} - 8\hat{k} \] ### Step 4: Simplify the vector \( \mathbf{c} \) We can factor out 8: \[ \mathbf{c} = 8(2\hat{i} - 2\hat{j} - \hat{k}) \] ### Step 5: Find the unit vector in the direction of \( \mathbf{c} \) Now, we find the magnitude of \( \mathbf{c} \): \[ |\mathbf{c}| = \sqrt{(16)^2 + (-16)^2 + (-8)^2} = \sqrt{256 + 256 + 64} = \sqrt{576} = 24 \] The unit vector \( \mathbf{u} \) in the direction of \( \mathbf{c} \) is: \[ \mathbf{u} = \frac{\mathbf{c}}{|\mathbf{c}|} = \frac{8(2\hat{i} - 2\hat{j} - \hat{k})}{24} = \frac{1}{3}(2\hat{i} - 2\hat{j} - \hat{k}) = \frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k} \] ### Step 6: Scale the unit vector to have a magnitude of 12 To find the vector with magnitude 12, we multiply the unit vector by 12: \[ \mathbf{d} = 12 \cdot \mathbf{u} = 12 \left(\frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k}\right) = 8\hat{i} - 8\hat{j} - 4\hat{k} \] ### Final Answer Thus, one such vector that is perpendicular to both \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \) with a magnitude of 12 is: \[ \mathbf{d} = 8\hat{i} - 8\hat{j} - 4\hat{k} \]

To solve the problem, we need to find a vector that is perpendicular to both \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \) with a magnitude of 12. Let's go through the steps systematically. ### Step 1: Define the vectors Given: \[ \mathbf{a} = 3\hat{i} + 2\hat{j} + 2\hat{k} \] \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4hat(j)+7hat(k) . What is the vector perpendicular to both the vectors ?

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find a unit vector perpendicular to both the vectors 4hat i-hat j+3hat k and -2hat i+hat j-2hat k

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

Find a unit vector perpendicular to both the vectors hat i-2hat j+3hat k and hat i+2hat j-hat k

Find a unit vector perpendicular to the vectors hat(j) + 2 hat(k) & hat(i) + hat(j)

The unit vector perpendicular to both the vectors a=hat i+hat j+hat k and b=2hat i-hat j+3hat k and making an acute angle with the vector k is

If vectors a=2hat(i)-3hat(j)+6hat(k) and vector b=-2hat(i)+2hat(j)-hat(k) , then (projection of vector a on b vectors)/(projection of vector b on a vector) is equal to