Home
Class 12
MATHS
If the vectors overset(to)(a) , overset...

If the vectors `overset(to)(a) , overset(to)(b) " and " overset(to)( c)` from the sides BC,CA and AB respectively of a`DeltaABC` then

A

`overset(to)(a),overset(to)(b)+overset(to)(b).overset(to)(c)+overset(to)(c).overset(to)(a)=0`

B

`overset(to)(a)xxoverset(to)(b)=overset(to)(b)xxoverset(to)(c)=overset(to)(c)xxoverset(to)(a)`

C

`overset(to)(a).overset(to)(b)=overset(to)(b).overset(to)(c)=overset(to)(c).overset(to)(a)`

D

`overset(to)(a)xxoverset(to)(b)+overset(to)(b)xxoverset(to)(c)+overset(to)(c)xxoverset(to)(a)=overset(to)(0)`

Text Solution

Verified by Experts

The correct Answer is:
B

By triangle law `vec(a) + vec(b) + vec(c ) =vec(0)`

Taking cross product by `vec(a) , vec( b),vec( c)` respectively
`vec(a) xx (vec(a) + vec(b) + vec( c) ) = vec(a) xx vec(0) = vec(0)`
`rArr vec(a) xx vec(a) + vec(a) xx vec(b)+ vec(a) xx vec(c ) =vec(a)`
`rArr vec(a) xx vec(b) =vec(c ) xx vec(a)`
Similarly `vec(a) xx vec(b) = vec(b) xx vec(a)`
` :. vec(a) xx vec(b) = vec(b) xx vec(a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors bara, barb and barc from the sides BC, CA and AB, respectively, of DeltaABC , then

Let overset(to)(a) , overset(to)(b) " and " overset(to)(c ) be three vectors having magnitudes 1 , and 2 respectively . If overset(to)(a) xx (overet(to)(a) xx overset(to)(c ) ) + overset(to)(b) = overset(to)(0) then the actue angle between overset(to)(a) " and " overset(to)(c ) is ......

Let the vectors overset(to)(a), overset(to)(b), overset(to)( c) " and " overset(to)(d) be such that (overset(to)(a) xx overset(to)(b)) xx ( overset(to)(c ) xx overset(to)(d)) = overset(to)(0) . " If " P_(1) " and " P_(2) are planes determined by the pairs of vectors overset(to)(a) , overset(to)(b) " and " oerset(to)(c ) , overset(to)(d) respectively then the angle between P_(1) " and "P_(2) is

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

Let overset(to)(a) , overset(to)(b) " and " overset(to)( c) be three non-zero vectors such that no two of them are collinear and (overset(to)(a) xx overset(to)(b)) xx overset(to)( c) = (1)/(3) |overset(to)(b)||overset(to)(c )|overset(to)(a). If 0 is the angle between vectors overset(to)(b) " and " overset(to)(c ) then a value of sin 0 is

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

A,B,C and d are four points in a plane with position vectors overset(to)(a),overset(to)(b),overset(to)(c ) and overset(to)(d) respectively such that (overset(to)(a)-overset(to)(d)).(overset(to)(b)-overset(to)(c))=(overset(to)(b)-overset(to)(d))(overset(to)(c)-overset(to)(a))=0 The point D then is the .... of the DeltaABC