Home
Class 12
MATHS
If overset(to)(V) = 2oveset(to)(i) + ove...

If `overset(to)(V) = 2oveset(to)(i) + overset(to)(j) - overset(to)(k) " and " overset(to)(W) = overset(to)(i) + 3overset(to)(k) .` if `overset(to)(U)` is a unit vectors then the maximum value of the scalar triple product `[overset(to)(U) , overset(to)(v) , overset(to)(W)]` is

A

`(-1)/(sqrt(59))`

B

`sqrt(10) + sqrt(6)`

C

`sqrt(59)`

D

`sqrt(60)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given `vec( V) = 2hat(i) + hat(j) - hat(k) " and " vec(W) = hat(i) + 3hat(k)`
`[vec(U)vec(V) vec(W)] = vec(U) . [(2hat(i) + hat(j) -hat(k)) xx (hat(i) + 3hat(k))]`
`=vec(U) .(3hat(i) -7hat(j) - hat(k)) = |vec(U)||3hat(i) - 7 hat(j) - hat(k)|` cos 0
Which is maximum if angle between `vec(U) " and " 3hat(i) - 7hat(j) - hat(k) `
is 0 and maximum value
`+|3hat(i) -7hat(j) - hat(k)|= sqrt(59)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

Let vec(A),vec(B),vec(C ) be vectors of length 3, 4, 5, respectively Let overset(to)(A) be perpendicular to overset(to)(B) +overset(to)(C ) , overset(to)(B) " to " overset(to)( C) + overset(to)(A) " and " overset(to)(C ) to overset(to)(A) +overset(to)(B) then the length of vector overset(to)(A) +overset(to)(B)+overset(to)(C ) is .......

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) , overset(to)(b) , overset(to)(c ) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

Let overset(to)(a),overset(to)(b),overset(to)(c ) be unit vectors such that overset(to)(a)+overset(to)(b)+overset(to)(c ) = overset(to)(0). Which one of the following is correct ?

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

Let overset(to)(p) , overset(to)(q) , overset(to)(r ) be three mutually perpendicular vectors of the same magnitude. If a vectors overset(to)(X) satisfies the equation overset(to)(p) xx [(overset(to)(x) -overset(to)(q)) xx overset(to)(p)] + overset(to)(q) xx [(overset(to)(x)-overset(to)(r ))xx overset(to)(q)] + overset(to)(r ) xx [(overset(to)(x) - overset(to)(p)) xx overset(to)(r )]=overset(to)(0) " then " overset(to)(x) is given by

Let overset(to)(u),overset(to)(v) " and " overset(to)(W) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(W)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(V)|=4" and " |overset(to)(W)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is