Home
Class 12
MATHS
If overset(to)(a) , overset(to)(b) " an...

If `overset(to)(a) , overset(to)(b) " and " overset(to)(c ) ` are three non- coplanar vectors then
`(overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))]` equals

A

0

B

`[ overset(to)(c)overset(to)(b) overset(to)c]`

C

`[overset(to)(c) overset(to)( b)overset(to)(c)]`

D

`[overset(to)(a) overset(to)(b)overset(to)(c)]`

Text Solution

Verified by Experts

The correct Answer is:
D

`(vec(a) + vec(b + vec( c)).[(vec(a) + vec(b)) xx (vec(a) +vec( c))]`
`=(vec(a) + vec(b) + vec( c)).[vec(a) xx vec(a) +vec(a) xx vec( c) + vec( b) xx vec(a) +vec(b) xx vec(c )]`
`={vec(a).(vec(a) xx vec( c)) + vec(a) . (vec(b) xx vec(a)) + vec(a). (vec(b)xx vec(c )) }+ {vec(b). (|vec(a)xx vec(c )|) + vec(b). (vec(b) xx vec(a)) + vec(b). (vec(b) xx vec( c)) } +{vec(c ).(vec(a) xx vec( c)) + vec( c). (vec(b) xx vec(a)) + vec(c ). (vec(b) xx vec( c))}`
`= [vec(a) ,vec(b) ,vec(c )] + [vec(b) vec(a) vec(c )]+[vec(c ) vec(b) vec(a)] = [ vec(a) vec(b) vec(c)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

if overset(to)(a),overset(to)(b) " and " overset(to)(c ) are unit vectors then |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)c|^(2)+|overset(to)(c)-overset(to)(a)|^(2) does not exceed