Home
Class 12
MATHS
Let a,b,c be distinct non- negative ...

Let a,b,c be distinct non- negative numbers . If the vectors `ahat(i) + ahat(j) + chat(k) , hat(i) + hat(k) " and " chat(i) + c hat(j) + bhat(k)` lie in a plane then c is

A

the arithmetic mean of a and b

B

the geometic mean of a and b

C

the harmonic mean of a and b

D

equal to zero

Text Solution

Verified by Experts

The correct Answer is:
B

Since three vectors are coplanar .
`|{:(a,,a,,c),(1,,0,,1),(c,,c,,b):}|=0`
Applying `C_(1) to C_(1)-C_(2) , |{:(0,,a,,c),(1,,0,,1),(0,,c,,b):}|=0`
` rArr - 1 (ab -c^(2)) =0 rArr ab = c^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a, b and c b the distinct non-negative numbers. If the vectors a hat(i) + a hat(j) + c hat(k), hat(i) + hat(k), c hat(i) + c hat(j) + b hat(k) lie on a plane, then which one of the following is correct?

Let a, b and c be the distinct non-negative numbers. If the vectors a hat(i)+c hat(k), hat(i)+hat(k), c hat(i) + c hat(j)+bhat(k) lie on a plane, then which one of the following is correct?

If the vectors (ahat(i)+a hat(j)+chat(k)), (hat(i)+hat(k)) and (c hat(i)+c hat(j)+b hat(k)) be coplanar, show that c^(2)=ab .

Let a ,b ,c be distinct non-negative numbers and the vectors a hat i+a hat j+c hat k , hat i+ hat k ,c hat i+c hat j+b hat k lie in a plane, and then prove that the quadratic equation a x^2+2c x+b=0 has equal roots.

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k), (anebnec) are coplanar, then (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=

If vectors ahat(i)+hat(j)+hat(k),hat(i)+bhat(j)+hat(k),hat(i)+hat(j)+chat(k) are coplanar, then a+b+c-abc= . . . . . . . .