Home
Class 12
MATHS
Let overset(to)(a) =a(1) hat(i) + a(2)...

Let ` overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(b) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(c) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k)` be three non- zero vectors such that `overset(to)(c )` is a unit vectors perpendicular to both the vectors `overset(to)(a )` and `overset(to)(b)`. If the angle between `overset(to)(a) " and " overset(to)(b)` is `(pi)/(6)` then
`|{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|^2` is equal to

A

0

B

1

C

`(1)/(4) (a_(1)^(2) +a_(2)^(2) +a_(3)^(2))(b_(1)^(2)+b_(1)^(2) +b_(3)^(2))`

D

`(3)/(4) (a_(1)^(2)+a_(2)^(2))(b_(1)^(2)+b_(2)^(2)+a_(3)^(2))(c_(1)^(2)+c_(2)^(2)+c_(3)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of the determinant \( |(a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3)|^2 \) given the conditions about the vectors \( \overset{\to}{a} \), \( \overset{\to}{b} \), and \( \overset{\to}{c} \). ### Step-by-Step Solution: 1. **Understanding the Vectors**: - Let \( \overset{\to}{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \) - Let \( \overset{\to}{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \) - Let \( \overset{\to}{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \) 2. **Given Conditions**: - \( \overset{\to}{c} \) is a unit vector perpendicular to both \( \overset{\to}{a} \) and \( \overset{\to}{b} \). - The angle \( \theta \) between \( \overset{\to}{a} \) and \( \overset{\to}{b} \) is \( \frac{\pi}{6} \). 3. **Cross Product**: - The cross product \( \overset{\to}{a} \times \overset{\to}{b} \) gives a vector that is perpendicular to both \( \overset{\to}{a} \) and \( \overset{\to}{b} \). - The magnitude of the cross product is given by: \[ |\overset{\to}{a} \times \overset{\to}{b}| = |\overset{\to}{a}| |\overset{\to}{b}| \sin(\theta) \] - Since \( \theta = \frac{\pi}{6} \), we have \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \). 4. **Magnitude of the Cross Product**: - Let \( |\overset{\to}{a}| = A \) and \( |\overset{\to}{b}| = B \). - Thus, the magnitude becomes: \[ |\overset{\to}{a} \times \overset{\to}{b}| = A \cdot B \cdot \frac{1}{2} \] 5. **Using the Unit Vector**: - Since \( \overset{\to}{c} \) is a unit vector, we can express it as: \[ \overset{\to}{c} = \frac{\overset{\to}{a} \times \overset{\to}{b}}{|\overset{\to}{a} \times \overset{\to}{b}|} \] 6. **Triple Product**: - The scalar triple product \( \overset{\to}{a} \cdot (\overset{\to}{b} \times \overset{\to}{c}) \) gives the volume of the parallelepiped formed by the vectors. - This can also be expressed as: \[ |(\overset{\to}{a}, \overset{\to}{b}, \overset{\to}{c})| = |\overset{\to}{a}| |\overset{\to}{b}| |\overset{\to}{c}| \cdot \cos(\phi) \] - Where \( \phi \) is the angle between \( \overset{\to}{c} \) and \( \overset{\to}{a} \). 7. **Calculating the Determinant**: - Since \( \overset{\to}{c} \) is perpendicular to both \( \overset{\to}{a} \) and \( \overset{\to}{b} \), the angle \( \phi = 90^\circ \) implies \( \cos(90^\circ) = 0 \). - Therefore: \[ |(\overset{\to}{a}, \overset{\to}{b}, \overset{\to}{c})| = \frac{1}{2} A B \] 8. **Final Calculation**: - The square of the determinant is: \[ |(\overset{\to}{a}, \overset{\to}{b}, \overset{\to}{c})|^2 = \left(\frac{1}{2} A B\right)^2 = \frac{1}{4} A^2 B^2 \] ### Conclusion: The final result is: \[ |(\overset{\to}{a}, \overset{\to}{b}, \overset{\to}{c})|^2 = \frac{1}{4} |A|^2 |B|^2 \]

To solve the given problem, we need to find the value of the determinant \( |(a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3)|^2 \) given the conditions about the vectors \( \overset{\to}{a} \), \( \overset{\to}{b} \), and \( \overset{\to}{c} \). ### Step-by-Step Solution: 1. **Understanding the Vectors**: - Let \( \overset{\to}{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \) - Let \( \overset{\to}{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \) - Let \( \overset{\to}{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If overset(to)(a) =hat(i) - hat(k) , overset(to)(b) = x hat(i) + hat(j) + (1-x) hat(k) and overset(c ) =y hat(i) +x hat(j) + (1+x-y) hat(k) . "Then " [overset(to)(a) , overset(to)(b) , overset(to)( c) ] depends on

If overset(to)(A) = 2hat(i) + hat(k) , overset(to)(B) = hat(i) + hat(j) +hat(k) " and " overset(to) (C ) = 4hat(i) - 3hat(j) +7hat(k) Determine a vector overset(to)(R ) " satisfying " overset(to)(R ) xx overset(to)( B) = overset(to)( C ) xx overset(to)( B) " and " overset(to)(R ) " ." overset(to)(A) = 0

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) , overset(to)(b) , overset(to)(c ) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b. If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

Let overset(to)(a) =2hat(i) +hat(j) + hat(k), overset(to)(b) =hat(i) + 2hat(j) -hat(k) and a unit vector overset(to)(c ) be coplanar. If overset(to)(c ) is perpendicular to overset(to)(a) " then " overset(to)(c ) is equal to

Let overset(to)(a) = hat(i) - hat(j) , overset(to)(b) - hat(k) , overset(to)( c) - hat(k) - hat(i) . If overset(to)(d) is a unit vector such that overset(to)(a) , Overset(to)(d) =0= [ overset(to)(b) overset(to)(c ) overset(to)d)] then overset(to)(d) equals

Let overset(to)(a) =2hat(i) + hat(j) -2hat(k) " and " overset(to)(b) = hat(i) + hat(j) . " If " overset(to)(c ) is a vectors such that |overset(to)(a)"." overset(to)(c ) = |overset(to)( c)| , |overset(to)(c )- overset(to)(a)|= 2sqrt(2) and the angle between (overset(to)(a) xx overset(to)(b)) " and " overset(to)( c ) " is " 30^(@), " then "|(overset(to)(a) xx overset(to)(b)) xx overset(to)( c )| is equal to

If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat(k) and vec(c) = hat(i) - m hat(j) + n hat(k) are three coplanar vectors and |vec(c)|=sqrt(6) , then which one of the following is correct?

Let overset(to)(a) =hat(i)+2hat(j)+hat(k),overset(to)(b) =hat(i)-hat(j)+hat(k),overset(to)(C )=hat(i)+hat(j) -hat(k). A vector coplanar to overset(to)(a) and overset(to)(b) has a projections along overset(to)(c ) of magnitude (1)/(sqrt(3)) then the vector is