Home
Class 12
MATHS
For non- zero vectors overset(to)(a) ,...

For non- zero vectors `overset(to)(a) , overset(to)(b), overset(to)(c )|,(overset(to)(a)xx overset(to)(b)), Overset(to)(c )|`
`=|overset(to)(a)||overset(to)(b)||overset(to)(c )|` holds if and only if

A

` overset(to)(a) , overset(to)(b)=0, overset(to)(b), overset(to)( c)=0`

B

`overset(to)(b), overset(to)(c) =0, overset(to)(c ), overset(to)(a) =0`

C

` overset(to)( c), overset(to)(a)= 0, overset(to)(a), overset(to)(b)=0`

D

` overset(to)(a),overset(to)(b)=overset(to)(b)=overset(to)(c)=overset(to)(c).overset(to)(a)=0`

Text Solution

Verified by Experts

The correct Answer is:
D

Given `|(vec(a) xx vec(b)) "." vec(c ) |=|vec(a)||vec(b)||vec(c )|`
`rArr ||vec(a) ||vec(b)| sin 0 hat(n) "." vec(c ) |=| vec(a)||vec(b)||vec(c )|`
`rArr |vec(a)||vec(b)||vec( c)|| sin 0 ". " cos alpha |=| vec(a)||vec(b)||vec(c )|`
`:. vec(a) bot vec(b) " and " vec( c)|| hat(n)`
`i.e., vec(a) bot vec(b) " and " vec(c ) ` perpendicular to both` vec(a) " and " vec(b).`
Promotional Banner

Similar Questions

Explore conceptually related problems

if overset(to)(b) " and " overset(to)(c ) are any two non- collinear unit vectors and overset(to)(a) is any vector then (overset(to)(a).overset(to)(b))overset(to)(b).(overset(to)(a).overset(to)(c )) overset(to)(c ) + .(overset(to)(a).(overset(to)(b)xxoverset(to)(c)))/(|overset(to)(b)xxoverset(to)(c)|^(2)).(overset(to)(b)xxoverset(to)(c))=.........

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

If vectors overset(to)(a) , overset(to)(b) , overset(to)( C) are coplanar then show that |{:(overset(to)(a),,overset(to)(b),,overset(to)(c )),(overset(to)(a)"."overset(to)(a),,overset(to)(a)"."overset(to)(b),,overset(to)(a)"."overset(to)(c )),(overset(to)(b)"."overset(to)(a),,overset(to)(b)"."overset(to)(b),,overset(to)(b)"." overset(to)(c )):}|

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to

Let the vectors overset(to)(a), overset(to)(b), overset(to)( c) " and " overset(to)(d) be such that (overset(to)(a) xx overset(to)(b)) xx ( overset(to)(c ) xx overset(to)(d)) = overset(to)(0) . " If " P_(1) " and " P_(2) are planes determined by the pairs of vectors overset(to)(a) , overset(to)(b) " and " oerset(to)(c ) , overset(to)(d) respectively then the angle between P_(1) " and "P_(2) is