Home
Class 12
MATHS
The scalar overset(to)(A) .[(overset(to...

The scalar `overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))]` equals

A

0

B

`[overset(to)(A)overset(to)(B)overset(to)(C)]+[overset(to)(B)overset(to)(C) overset(to)(A)]`

C

`[overset(to)(A) overset(to)(B) overset(to)(C)]`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
A

`vec(A) ". " {(vec(B) +vec(C )) xx vec(A) + vec(B) + vec(C ))}`
`[:'" it is a scalar triple product of three vectors of the form " vec(A) , vec(B) + vec(C ) , vec(A) + vec(B) +vec(C )]` ,

`=vec(A) ". " (vec(B) xx vec(A) + vec(B) xx vec(B)`
`+vec(B) xx vec(C ) + vec( C) xx vec(A) + vec( C) xx vec(B) + vec( C) xx vec( C))`
`=vec(A) .(vec(B) xx vec(A)) + vec(A).(vec(B) xx vec(C )) + vec(A). (vec(C) xx vec(B))`
`=[vec(A) vec(B) vec(A)] -[vec(A)vec(B) vec(C )]=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If A,B,C,D are any four points in space then prove that |overset(to)(AB)xx overset(to)(CD) + overset(to)(BC)xx overset(to)(AD) + overset(to)(CA)xx overset(to)(BD) | = (" area of " Delta ABD)

If overset(to)(a) " and " overset(to)(b) are vectors in space given by overset(to)(a) = (hat(i) -2hat(j))/(sqrt(5)) " and " overset(to)(b) = (2hat(i) + hat(j) +3hat(k))/(sqrt(14)) then the value of (2overset(to)(a) + overset(to)(b)).[(overset(to)(a) xx overset(to)(b)) xx (overset(to)(a) -2overset(to)(b))] is .........

If overset(to)(A) = 2hat(i) + hat(k) , overset(to)(B) = hat(i) + hat(j) +hat(k) " and " overset(to) (C ) = 4hat(i) - 3hat(j) +7hat(k) Determine a vector overset(to)(R ) " satisfying " overset(to)(R ) xx overset(to)( B) = overset(to)( C ) xx overset(to)( B) " and " overset(to)(R ) " ." overset(to)(A) = 0

Let the vectors overset(to)(a), overset(to)(b), overset(to)( c) " and " overset(to)(d) be such that (overset(to)(a) xx overset(to)(b)) xx ( overset(to)(c ) xx overset(to)(d)) = overset(to)(0) . " If " P_(1) " and " P_(2) are planes determined by the pairs of vectors overset(to)(a) , overset(to)(b) " and " oerset(to)(c ) , overset(to)(d) respectively then the angle between P_(1) " and "P_(2) is

Let vec(A),vec(B),vec(C ) be vectors of length 3, 4, 5, respectively Let overset(to)(A) be perpendicular to overset(to)(B) +overset(to)(C ) , overset(to)(B) " to " overset(to)( C) + overset(to)(A) " and " overset(to)(C ) to overset(to)(A) +overset(to)(B) then the length of vector overset(to)(A) +overset(to)(B)+overset(to)(C ) is .......