Home
Class 12
MATHS
Let a= hat(i) - hat(j) , b=hat(i) + hat(...

Let `a= hat(i) - hat(j) , b=hat(i) + hat(j) + hat(k)` and c be a vector such that `axx c + b=0 " and " a. c =4, ` then `|c|^(2)` is equal to

A

8

B

`(19)/(2)`

C

9

D

`(17)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square of the magnitude of vector \( \mathbf{c} \) given the conditions involving vectors \( \mathbf{a} \) and \( \mathbf{b} \). ### Given: - \( \mathbf{a} = \hat{i} - \hat{j} \) - \( \mathbf{b} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{a} \times \mathbf{c} + \mathbf{b} = 0 \) - \( \mathbf{a} \cdot \mathbf{c} = 4 \) ### Step 1: Rearranging the first equation From the first condition, we can rearrange it to find \( \mathbf{c} \): \[ \mathbf{a} \times \mathbf{c} = -\mathbf{b} \] ### Step 2: Calculate \( \mathbf{a} \times \mathbf{b} \) To find \( \mathbf{a} \times \mathbf{b} \), we can use the determinant method: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i}(-1) - \hat{j}(1) + \hat{k}(1 + 1) \] \[ = -\hat{i} - \hat{j} + 2\hat{k} \] ### Step 3: Substitute into the vector equation Now, substituting back into our rearranged equation: \[ \mathbf{a} \times \mathbf{c} = -(\hat{i} + \hat{j} + \hat{k}) \] This gives us: \[ \mathbf{a} \times \mathbf{c} = -\hat{i} - \hat{j} - \hat{k} \] ### Step 4: Use the vector identity Using the vector identity \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \): \[ \mathbf{a} \times \mathbf{c} = -\hat{i} - \hat{j} - \hat{k} \] Substituting \( \mathbf{b} = \hat{i} + \hat{j} + \hat{k} \): \[ \mathbf{a} \cdot \mathbf{c} = 4 \] \[ \mathbf{a} \cdot \mathbf{b} = 1 - 1 + 0 = 0 \] ### Step 5: Solve for \( \mathbf{c} \) From the properties, we have: \[ \mathbf{c} = \frac{1}{2}(-\hat{i} - \hat{j} - \hat{k}) + 2\hat{c} \] This gives us: \[ \mathbf{c} = 3\hat{i} - 5\hat{j} + 2\hat{k} \] ### Step 6: Find the magnitude squared of \( \mathbf{c} \) Now we compute \( |\mathbf{c}|^2 \): \[ |\mathbf{c}|^2 = \left( \frac{3}{2} \right)^2 + \left( -\frac{5}{2} \right)^2 + (1)^2 \] \[ = \frac{9}{4} + \frac{25}{4} + 1 \] \[ = \frac{9 + 25 + 4}{4} = \frac{38}{4} = \frac{19}{2} \] ### Final Answer Thus, the value of \( |\mathbf{c}|^2 \) is: \[ \boxed{\frac{19}{2}} \]

To solve the problem, we need to find the square of the magnitude of vector \( \mathbf{c} \) given the conditions involving vectors \( \mathbf{a} \) and \( \mathbf{b} \). ### Given: - \( \mathbf{a} = \hat{i} - \hat{j} \) - \( \mathbf{b} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{a} \times \mathbf{c} + \mathbf{b} = 0 \) - \( \mathbf{a} \cdot \mathbf{c} = 4 \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a= 2hat(i)+ hat(j) -2hat(k) , b=hat(i) +hat(j) and c be a vectors such that |c-a| =3, |(axxb)xx c|=3 and the angle between c and axx b" is "30^(@) . Then a. c is equal to

If vec a=hat j-hat k and vec c=hat i+hat j+hat k are given vectors,and vec b is such that a vec a*vec b=3 and vec a xxvec b+vec c=0 then is equal to

If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(k) and c=ma+nb , then m+n is equal to

0.4 hat(i)+0.8 hat(j) + c hat(k) represents a unit vector when c is :

If vec a=hat i+hat j+hat k and vec b=hat j-hat k, find a vector vec c such that vec a x vec c=vec b and vec a*vec c=3

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals