Home
Class 12
MATHS
Two parabolas have the same vertex and e...

Two parabolas have the same vertex and equal lengh of latus rectum such that their axes are at right angle. Prove that the common tangents touch each at the end of latus rectum.

Promotional Banner

Similar Questions

Explore conceptually related problems

Two equal parabolas have the same vertex and their axes are at right angles.Prove that their common tangent touches each at the end of their latus recta.

Two equal parabolas have the same vertex and their axes are at right angles. Prove that their common tangent touches each at the end of their latus recta.

Two equal parabolas have the same vertex and their axes are at right angles.The length of the common tangent to them,is

Two equal parabolas have the same vertex and their axes are at right angles. The length of the common tangent to them, is

Prove that the least focal chord of a parabola is the latus rectum .

Find the vertex and length of latus rectum of the parabola x^(2)=-4(y-a) .

Find the vertex and length of latus rectum of the parabola x^(2)=-4(y-a) .

Find the equation of the parabola whose vertex is (2,3) and the equation of latus rectum is x = 4 . Find the coordinates of the point of intersection of this parabola with its latus rectum .