Home
Class 12
MATHS
inte^(x)(1+x)sec^(2)(xe^(x))dx=f (x)+ ...

`inte^(x)(1+x)sec^(2)(xe^(x))dx=f (x)+` Constant , then f (x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int e^(x)(1+x)*sec^(2)(x e^(x))dx=f(x)+ constant, then f(x)=

inte^x(1+x)sec^2(xe^x)dx= f(x) +constant, then find f(x)

If int(dx)/(xlogx)=f(x)+ constant, then f(x) is equal to

If inte^(x)((1-sinx)/(1-cosx))dx=f(x)+ Constant, then f(x) is equal to

If int e^(x)(1+x)sec^(2)(xe^(x))dx = f(x) +c then f(x) equal to

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to: