Home
Class 12
MATHS
Let vecx and vecy are 2 non - zero and n...

Let `vecx and vecy` are 2 non - zero and non - collinear vectors, then the largest value of k such that the non - zero vectors `(k^(2)-5k+6)vecx+(k-3)vecy` and `2vecx+5vecy` are collinear is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a and b are non-zero and non-collinear vectors, then show that axxb=["a b i"]hati+["a b j"]hatj+["a b k"]hatk

If a and b are non-zero and non-collinear vectors, then show that axxb=["a b i"]hati+["a b j"]hatj+["a b k"]hatk

If a and b are non-zero and non-collinear vectors, then show that axxb=["a b i"]hati+["a b j"]hatj+["a b k"]hatk

If the points where position vector 5veci+3vecj,2veci-vecj and xveci+3vecj are collinear then x is :

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

The points with position vectors vecx + vecy, vecx-vecy and vecx +λ vecy are collinear for all real values of λ.

If the points (k,2k),(3k,3k) and (3,1) are collinear then the non-zero value of k is

Show that the vectors 2veci-3vecj+4veck, -4veci+6vecj-8veck are collinear.