Home
Class 12
MATHS
tan^(-1)1 + tan^(-1) 2 + tan^(-1) 3 = pi...

`tan^(-1)1 + tan^(-1) 2 + tan^(-1) 3 = pi = 2 (tan^(-1) 1 + tan^(-1)""(1)/(2) + tan^(-1)""(1)/(3))` सिद्ध करे :

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1) 1+tan ^(-1) 2+tan ^(-1) 3 = pi =2 (tan ^(-1) ""(1)/(2)+tan ^(-1) ""(1)/(3) + tan ^(-1) 1) [ take priencipal value in each case]

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)