Home
Class 12
MATHS
If y = sin (log (e) x) then (x ^(2) (d ^...

If `y = sin (log _(e) x)` then `(x ^(2) (d ^(2) y)/(dx ^(2)) +x (dy )/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y =3 cos (log x) + 4 sin (log x), then x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y = a cos (ln x)+ b sin (ln x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=x sin(log x)+x log x, prove that x^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+2y=x log x

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to